
Chapter 2

Two-dimensional structures from
algorithms
The roles of order and chance: the example of 2d-fractals

In the first chapter we presented some introductory considerations on information in com-
parison with the Aristotelian-Thomistic notion of form. A special attention has been de-
voted to the notion of algorithmic information viewed as a suitable candidate to approach
the logical/ontological notions of definition/essence regarding the structure of an entity and
respectively its nature on the side of its dynamics according to which it can operate and
especially the dynamics generating the entity itself.1

Two simple didactical examples of fractal generation were enough to show how a suitable
assigned (mathematical or physical) law can hide the capability of defining/constructing an
entire complex entity, which exhibits a precise ordered structure like a Julia set and a fractal
basin of attraction of a magnetic pendulum.

In the present chapter we will examine in more deepness how order and chance may enter
into the definition/structure and the dynamics/nature of some kinds of organized entities.

2.1 Ordered entity structures generated by ordered processes

2.1.1 Analytic geometry

As a first trivial class of ordered entity structures built by a very simple mathematical law
we can consider the entire environment of Cartesian analytic geometry.

1We remember that, roughly speaking, by Aristoelian-Thomistic notion of form we mean a non-material
principle organizing the structure of an entity, while by nature we mean the same principle as it is able to
determine the dynamics of the same entity.

17

18 A. Strumia, Information as order hidden within chance

In fact algebraic equations involving two or respectively three variables (co-ordinates) as:

f(x, y) = 0, g(x, y, z) = 0, (2.1)

or algebraic inequalities as:

f(x, y)  0, g(x, y, z)  0, (2.2)

are enough to determine univocally a set of points in a Cartesian plane or, respectively, 3D
space,2 f, g being functions of the co-ordinates x, y or x, y, z of each point belonging to the
set.3 Equations identify paths on Cartesian plane or respectively surfaces4 in space, while
inequalities determine a region of points aside the paths (internal or external if the path and
the surface are closed), of the same dimension as the plane or respectively the space.

Fig.1 - a) Path set defined by the Cartesian equation x2 + y2 = R2, R = 0.9;
b) Filled set defined by the inequality x2 + y2  R2, R = 0.9.

Such structures are essentially simple, i.e., non-complex, since they do not exhibit self-
similarity properties, being built by a non-iterative procedure. In this sense we have qualified
them as a trivial class of sets. In e↵ect they represent at most a sort of first level of idealized
approximation to real bodies.

The interest of even apparently simple structures arises, as it has been pointed out by
René Thom, if we consider their boundaries as singularities emerging within a continuous
body represented by the whole plane, or respectively the whole space5. In fact each boundary
manifold of Cartesian equation f(xi) = 0, i = 1, 2, · · · , n� 1 (where n is the space dimension-
ality), represents, for physical bodies, a front across which some physical quantity, as e.g.,

2More generally also in hyperspace of any dimension.
3Of course inequalities like f(x, y) � 0, g(x, y, z) � 0 can be reduced to the form (2.2) multiplying each

member by �1.
4More generally manifolds in hyperspace of any dimension.
5Or hyperspace if we consider higher dimensional abstract spaces.

Chapter 2 – Two-dimensional structures from algorithms 19

Fig.2 - a) Section of a surface set defined by the Cartesian equation x2 + y2 + z2 = R2, R = 1.0;
b) Filled set (body) defined by the inequality x2 + y2 + z2  R2, R = 1.0.

mass density, becomes discontinuous so that some body may be retailed and distinguished
by the other ones, determining its geometrical form.6.

2.1.2 Two-dimensional fractals in a plane

A more relevant class of structures is provided by fractal structures, which can be obtained,
generally, by an “adequate” number7 of iterations of some mathematical law. A typical
property of fractals is self-similarity (exact or at least statistical). In fact they exhibit
repeated geometrical shapes at any scale they may be examined. So it results impossible to
decompose them into simpler elementary parts characterized by a lower level of complexity,
i.e., to reduce their fractal dimension8 analyzing them at any deeper (in principle even
infinitesimal) scale level. A physical limit is imposed only by the computational power of our
machines.

Here we are not interested in examining in detail fractals and their properties, but we
are interested in emphasizing that generally many of them are generated by procedures that
apply a mathematical algorithm (law) following an ordered sequence of operations, so that an
ordered (self-similar) fractal structure of the resulting entity arises. In this sense we can say
that “order generates order”. It is not surprising to obtain order from order ; more surprise

6Here the word form means mainly shape and the related information law from which that shape is
obtained. The problem has been examined in mathematical detail, with an e↵ort to establish comparison to
the Aristotelian notion of space and form by R.Thom, in [17].

7Where “adequate” means, in principle “infinite”, and in practice “su�ciently great” in order that self-
similarity appears according to the desired detail level.

8We remember that fractal dimension is a measure of the fraction of straight line filled by a set of points,
or the fraction of plane filled by a curve (increased by one), or the fraction of space filled by a shape, increased
by two, and so on. Generally the formula D = logN/ logK is employed to evaluate a-priori or to estimate
a-posteriori (with the box counting method) the fractal dimension of a fractal path. D represents the fractal
dimension, N the number of segments with which, at recursion step n+ 1, one replaces the segment obtained
at the step n, being divided into K parts.

20 A. Strumia, Information as order hidden within chance

will arise when we will observe “order arising from chance” thanks to a law hidden into the
apparent disorder.

Examples

Typically, the programs generating Mandelbrot set, Julia sets and Newton’s method fractals
perform a sequentially ordered scanning of a square region of the Cartesian plane applying
to the co-ordinates of each point a recursion law in order to determine if it belongs to the
fractal set9 or not, and plot to the computer display a pixel of a color corresponding to the
numerical result obtained.10

In particular Mandelbrot set, Julia sets nad Newton’s method sets are representations on
the complex plane of the domain of convergence of a complex series, while other kinds of
fractals may arise by sequential operations on real numbers.

The degree of complexity of those and similar fractals may depend:

i) on the combined e↵ect of the level of non-linearity of the function (law) involved in the
recursion procedure;

ii) on the number of iterations of the procedure itself;

iii) and on the number of the control parameters included into the law.

An intensively studied recursion law has the general form:

zn+1 = f(zn) + c, (2.3)

where z = x+ iy, c = a+ ib are complex numbers and f(z) is an assigned complex function.
The search for the convergence domain of the series:

+1X

n=1

zn ⌘ z1 + z2 + · · ·+ zn + · · · , (2.4)

leads to fractal sets.11 Gaston Julia (1893-1978) and Benoit Mandelbrot (1924-2010) studied
in detail the simplest non-trivial case when:

f(z) = z2. (2.5)

In particular when it is assumed that z0 = 0 and c swaps the entire complex plane, the
Mandelbrot set is generated, while, on the contrary, when c is fixed, during calculations, at
some chosen value and z0 swaps the complex plane, the Julia sets are obtained.

9The set being defined as the convergence domain of a suitable series.
10When colors are chosen according to suitable color maps the beauty of the picture may result of great

e↵ect.
11With the exception of the trivial function f(z) = z.

Chapter 2 – Two-dimensional structures from algorithms 21

Fig.3 - a) Mandelbrot set; b) Julia set (c = �0.7454294)

The Matplolib module in Python 3 provides a very e�cient set of instructions to build
2D fractals as wholes.

Python 3 codes to generate pictures in fig. 3

###
2D Mandelbrot set with complex arrays
(matplotlib module)
###

import numpy as np # import numpy module
import matplotlib.pyplot as plt # import matplotlib module

n = 8 # set number of cycles
Cx = -.8 # set initial x parameter shift
Cy = 0.0 # set initial y parameter shift
L = 1.7 # set square area side
M = 2024 # set side number of pixels

x = np.linspace(Cx-L,Cx+L,M) # x variable array
y = np.linspace(Cy-L,Cy+L,M) # y variable array
X,Y = np.meshgrid(x,y,sparse=True) # square area grid
Z = np.zeros(M) # complex starting points area
C = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle
Z1 = Z**2 + C
Z = Z1

W = np.e**(-abs(Z)) # smoothed sum moduls

plt.imshow(W,interpolation=’nearest’, cmap=plt.cm.nipy_spectral)
plt.axis("off")

plt.show() # plot image

22 A. Strumia, Information as order hidden within chance

###
2D Julia set with complex arrays (c=-0.7454294)
(matplotlib module)
###

import numpy as np # import numpy module
import matplotlib.pyplot as plt # import matplotlib module

n = 9 # set number of cycles
Cx = -0.7454294 # set c parameter real part value
Cy = 0 # set c parameter imaginary part value
C = Cx + 1j*Cy
L = 1.7 # set square area side
M = 2024 # set side number of pixels

x = np.linspace(-L,L,M) # x variable array
y = np.linspace(-L,L,M) # y variable array
X,Y = np.meshgrid(x,y,sparse=True) # square area grid
Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle
Z1 = Z**2 + C
Z = Z1

W = np.e**(-abs(Z)) # smoothed sum moduls

plt.imshow(W,interpolation=’nearest’, cmap=plt.cm.nipy_spectral)
plt.axis("off")

plt.show() # plot image

We may observe that while the Mandelbrot set shape is simply stretched and scaled if z0
is fixed at a value di↵erent from zero (see fig. 4), the Julia sets assume very di↵erent shapes
depending on the choice of the parameter c (see figs 5-6).

Fig.4 - a) Mandelbrot set (z0 = 1.0); b) Mandelbrot set (z0 = 1.3)

Chapter 2 – Two-dimensional structures from algorithms 23

Fig.5 - a) Julia set for c = �0.7454294 + i0.113089; b) Julia set for c = �0.561321� i0.641

Fig.6 - a) Julia set for c = �0.2009� 0.67037 b) Julia set for c = 0.11031� i0.67037

24 A. Strumia, Information as order hidden within chance

Generalized Mandelbrot sets have been obtained starting from a di↵erent choice of the
function f(z), as it is shown in figs 7-10.

Fig.7 - f(z) = z3 + c Fig.8 - f(z) = z4 + c

Fig.9 - f(z) = cos2 z + c Fig.10 - f(z) = tan2 z + c

Chapter 2 – Two-dimensional structures from algorithms 25

Similarly generalized Julia sets can be obtained starting from a di↵erent choice of the
function f(z) (see figs 11-12).

Fig.11 - f(z) = z3 + c Fig.12 - f(z) = z4 + c

We conclude this section with two examples based on Newton’s method.
Newton’s method is used to check approximated zero solutions to polynomials of any

degree, being based on the recursion law:12

zk+1 = zk �
f(zk)

f 0(zk)
. (2.6)

Fig.13 - f(z) = z3 + 1 Fig.14 - f(z) = z4 + 1

12This law can be obtained by the first order Taylor expansion of f(z) in the neighborhood of z0, given by:
f(z) = f(z0) + f 0(z0)(z � z0). Requiring that f(zk+1) = 0 and setting z0 = zk it results, solving by zk that

zk+1 = zk � f(zk)
f 0(zk)

, provided that it is assumed that f 0(zk 6= 0.

26 A. Strumia, Information as order hidden within chance

Python 3 codes to generate Figs 13 and 14

###
Newton’s method set (Z**3+1=0 or Z**4+1=0)
with complex arrays (matplotlib module)
###

import numpy as np # import numpy module
import matplotlib.pyplot as plt # import matplotlib module

n = 8 # alternative n = 12 # set number of cycles
Cx = 0.0 # set initial x parameter shift
Cy = 0.0 # set initial y parameter shift
L = 1.0 # set square area side
M = 2024 # set side number of pixels

x = np.linspace(-L-Cx,L-Cx,M) # x variable array
y = np.linspace(-L-Cy,L-Cy,M) # y variable array
X,Y = np.meshgrid(x,y,sparse=True) # square area grid

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle
Z1 = Z - (Z**3 + 1)/(3*Z**2)
alternative Z1 = Z - (Z**4 + 1)/(4*Z**3)
Z = Z1

W = np.e**(-.5*abs(Z)) # smoothed sum moduls

plt.imshow(W,interpolation=’nearest’, cmap=plt.cm.nipy_spectral)
plt.axis("off")
plt.show() # plot image

In the examples we have just presented the recursion law (information) – according to
a philosophical perspective – plays a role which appears to be similar to that of a form
or essence respect to the resulting entity (the fractal object), since it defines exactly and
univocally its structure. While the individual paper sheet on which the image is printed
or the individual screen on which it is displayed plays the role of matter determining each
singular actualization of the form. We emphasize that, in the previous examples, the action
of the form is revealed only as final result of its operation. So the fractal object is considered
as a whole, while the process of the emergence of its ordered structure by the action form is
not revealed.

In order to reveal how an algorithm operates in generating the whole, starting from
unrelated parts, we need a di↵erent programming strategy which allows to show the fractal
emergence point by point and not only as a final whole.

In 2D we have can achieve easily our goal thanks, e.g., to Graphics module in Python 3.

Chapter 2 – Two-dimensional structures from algorithms 27

Showing the ordered sequential process generating 2D fractals point by point

Therefore, beside showing the pictures of fractals as wholes, it is relevant13 for us to show also
the possibile dynamics capable to generate each image, examining the evolutionary process of
image generation at each stage, so revealing the role of form/information as operating nature.

An elementary process is provided by scanning a region of the complex (or xy) plane
sequentially (raw after raw, column after column), so that it appears clearly as order generates
order.

Steps of the generation process of Mandelbrot set, Julia set (c = 0.7454294) and Newton’s
method set (f(z) = z6 +1) are shown in figs 15-17. Here are the related programming codes.

Python 3 codes to generate Figs 15, 16 and 17

##
Sequential ordered steps of 2D Mandelbrot set generation
(graphics module)
##

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

Radius = 10 # set escape rate threshold
x0 = .5 # set initial x co-ordinate shift
y0 = 0.0 # set initial y co-ordinate shift
Side = 1.2 # set square area side
M = 300 # set side number of elementary squares
N = 1 # set color map scale factor
Num = 256*N # set number of cycles
sT=5 # set step jump

win = GraphWin("Mandelbrot set", int(5*M/3),int(5*M/3)) # set window title
win.setBackground("white") # set background color

def rectCol(p,q,w): # define elementary cell
Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),
Point(int(p+sT/2),int(q+sT/2)))
Rect.draw(win).setFill(color_rgb(int(w),int(128-w/2),
int(128+w/2)))

for p in range(1,M,sT): # column scanning cycle
Incy = y0 - Side + 2*Side/M*p # define column scanning function
for q in range(1,M,sT): # raw scanning cycle

Incx = x0 - Side + 2*Side/M*q # define raw scanning function
x = 0.0 # set starting x co-ordinate
y = 0.0 # set starting y co-ordinate
w = 0 # set starting escape modulus value
for n in range(1,Num): # recursion cycle

xx = x*x - y*y - Incx
yy = 2*x*y - Incy
x = xx
y = yy

13In particular for future applications to biology, as it will be shown in chapters 8 and 9.

28 A. Strumia, Information as order hidden within chance

Fig.15 - Rough scheme of ordered sequential generation of Mandelbrot set

VIEW ANIMATION (requires internet connection)

Fig.16 - Rough scheme of ordered sequential generation of a Julia set (c = 0.7454294)

VIEW ANIMATION (requires internet connection)

Fig.17 - Rough scheme of ordered sequential generation of a Newton’s method set (f(z) = z6 + 1)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/MandelbrotSQ.m4v
http://albertostrumia.it/sites/default/files/Animations/JuliaSQ.m4v
http://albertostrumia.it/sites/default/files/Animations/NewtonSQ.m4v

Chapter 2 – Two-dimensional structures from algorithms 29

if x*x + y*y > Radius: # escape rate condition
w = n/N # escape modulus normalization
rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell
break # interrupt cycle

win.getMouse() # wait for mouse click
win.close() # close window

##
Sequential ordered steps of a 2D Julia set generation
(c=0.7454294)
(graphics module)
##

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

Radius = 10 # set escape rate threshold
Cx = 0.7454294 # set c parameter real part value
Cy = 0.0 # set c parameter imaginary part value
Side = 1.7 # set square area side
M = 300 # set side number of elementary squares
N = 1 # set color map scale factor
Num = 256*N # set number of cycles
sT=3 # set step jump

win = GraphWin("Julia set", 5*M/3,5*M/3) # set window title
win.setBackground("white") # set background color

def rectCol(p,q,w): # define elementary cell
Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),
Point(int(p+sT/2),int(q+sT/2)))
Rect.draw(win).setFill(color_rgb(int(w),int(128-w/2),
int(128+w/2)))

for p in range(1,M,sT): # column scanning cycle
Incy = - Side + 2*Side/M*p # define column scanning function
for q in range(1,M,sT): # raw scanning cycle

Incx = - Side + 2*Side/M*q # define raw scanning function
x = Incx # set starting increment of x co-ordinate
y = Incy # set starting increment of y co-ordinate
w = 0 # set starting escape modulus value
for n in range(1,Num): # recursion cycle

xx = x*x - y*y - Cx
yy = 2*x*y - Cy
x = xx
y = yy
if x*x + y*y > Radius: # escape rate condition

w = n/N # escape modulus normalization
rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell
break # interrupt cycle

win.getMouse() # wait for mouse click
win.close() # close window

30 A. Strumia, Information as order hidden within chance

##
Sequential ordered steps of a 2D Newton’s method set
generation - Polynomial f(z) = z**6+1
(graphics module)
##

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module
import numpy as np # import numpy module

Radius = .5 # set escape rate threshold
Cx = 0.0 # set initial x parameter shift
Cy = 0.0 # set initial y parameter shift
Side = .8 # set square area side
M = 300 # set side number of elementary squares
N = 1 # set color map scale factor
Num = 256*N # set number of cycles
sT=2 # set step jump

win = GraphWin("Newton’s method set", 5*M/3,5*M/3) # set window title
win.setBackground(color_rgb(230,220,10)) # set background color

def rectCol(p,q,w): # define elementary cell
Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),
Point(int(p+sT/2),int(q+sT/2)))
Rect.draw(win).setOutline(color_rgb(np.int(255*np.sin(w)**2),
np.int(255*np.cos(w)**2),np.int(255*np.cos(w/2)**2)))

Alternative values Cx 0.1747, 0.1747 Cy -.072,-1.072
Side 0.0015, 0.00015 Num 1024

for p in range(1,M,sT): # column scanning cycle
Incy = - Side + 2*Side/M*p # define column scanning function
for q in range(1,M,sT): # raw scanning cycle

Incx = - Side + 2*Side/M*q # define raw scanning function
x = Incx # set starting increment of x co-ordinate
y = Incy # set starting increment of y co-ordinate
w = 0 # set starting escape modulus value
for n in range(1,Num): # recursion cycle

xx = 5*x/6.0 - x*(x*x*x*x - 10*x*x*y*y +5*y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0
yy = 5*y/6.0 + y*(5*x*x*x*x - 10*x*x*y*y + y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0
x = xx
y = yy
if (x-Cx)*(x-Cx) + (y-Cy)*(y-Cy) < Radius: # escape rate condition

w = n/N # escape modulus normalization
rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell
break # interrupt cycle

win.getMouse() # wait for mouse click
win.close() # close window

2.2 Ordered entity structures generated by random processes

Now it is relevant, especially regarding biological applications, to observe that the ordered
sequential process, we have just tested in the previous §2.1 does not provide the only possibile

Chapter 2 – Two-dimensional structures from algorithms 31

dynamics capable to generate ordered structures. In alternative to assign the initial conditions
– starting from which one applies the mathematical algorithm (information) generating the
corresponding point of the plot (pixel or cell on the screen) – according to a sequential order,
we may always choose them at random.

With that choice each point or cell will appear on the computer display here and there,
randomly. But at the end of the process, the same ordered structure of the structure will
result. In other words, chance seems to generate order, but only thanks to the information
hidden within the mathematical law encoded in the algorithm. The ordinating principle is
information and not chance as such.

2.2.1 Showing the random process generating 2D fractals

Mandelbrot, Julia and Newton’s method sets

A typical example is o↵ered by 2D fractals.

We present, for a comparison with the sequential process, pictures and Python 3 related
codes generating Mandelbrot, Julia and Newton’s method fractals arising starting from ran-
dom initial conditions. Of course the smaller are the elementary squares building the plot
the more refined image will result.14

We show in figs 18, 19 and 20 the same Mandelbrot, Julia and Newton’s method sets
considered before, now generated by random assignment of initial conditions. One may
recognize how order, initially lacking appears slowly step by step,

Fig.18 - Rough scheme of random generation of Mandelbrot set

VIEW ANIMATION (requires internet connection)

14Naturally a more refined image requires a longer computing time.

http://albertostrumia.it/sites/default/files/Animations/MandelbrotRD.m4v

32 A. Strumia, Information as order hidden within chance

Fig.19 - Rough scheme of random generation of a Julia set (c = 0.7454294)

VIEW ANIMATION (requires internet connection)

Fig.20 - Rough scheme of random generation of a Newton’s method set (f(z) = z6 + 1)

VIEW ANIMATION (requires internet connection)

Python 3 codes to generate Figs 18, 19 and 20

###
2D Mandelbrot set random generation
(graphics module)
###

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module
import random # import random module

Radius = 10 # set escape rate threshold
Cx = .5 # set initial x co-ordinate shift
Cy = 0.0 # set initial y co-ordinate shift
Side = 1.3 # set square area side
M = 300 # set side number of elementary squares
N = 1 # set color map scale factor

http://albertostrumia.it/sites/default/files/Animations/JuliaRD.m4v
http://albertostrumia.it/sites/default/files/Animations/NewtonRD.m4v

Chapter 2 – Two-dimensional structures from algorithms 33

Num = 256*N # set number of cycles
sT=5 # set step jump

win = GraphWin("Mandelbrot set", int(5*M/3),int(5*M/3)) # set window title

def rectCol(p,q,w): # define elementary cell
Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),
Point(int(p+sT/2),int(q+sT/2)))
Rect.draw(win).setFill(color_rgb(int(10*w%255),
int((128-10*w)%255),int((128+10*w)%255)))

Alternative values Cx 0.1747, 0.1747 Cy -.072,-1.072
Side 0.0015, 0.00015 Num 1024

i = 1 # set non-zero index value
while i > 0: # set random co-ordinates choice cycles

p = random.randrange(1,M)
q = random.randrange(1,M)
Incx = Cx - Side + 2*Side/M*q
Incy = Cy - Side + 2*Side/M*p
x = 0.0 # set starting x co-ordinate
y = 0.0 # set starting y co-ordinate
w = 0 # set starting escape modulus value
for n in range(1,Num):

xx = x*x - y*y - Incx
yy = 2*x*y - Incy
x = xx
y = yy
if x*x + y*y > Radius: # escape rate condition

w = n/N # escape modulus normalization
rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell
break # interrupt cycle

##################################
2D Julia set random generation
(graphics module)
##################################

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module
import random # import random module

Radius = 10 # set escape rate threshold
Cx = 0.7454294 # set c parameter real part value
Cy = 0.0 # set c parameter imaginary part value
Side = 1.7 # set square area side
M = 300 # set side number of elementary squares
N = 1 # set color map scale factor
Num = 256*N # set number of cycles
sT=2 # set step jump

win = GraphWin("Julia set", 5*M/3,5*M/3) # set window title

def rectCol(p,q,w): # define elementary cell
Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),
Point(int(p+sT/2),int(q+sT/2)))
Rect.draw(win).setOutline(color_rgb(int(10*w%255),

34 A. Strumia, Information as order hidden within chance

int((128-10*w)%255),int((128+10*w)%255)))

Alternative values Cx 0.1747, 0.1747 Cy -.072,-1.072
Side 0.0015, 0.00015 Num 1024

i = 1 # set non-zero index value
while i > 0: # set random co-ordinates choice cycles

p = random.randrange(1,M)
q = random.randrange(1,M)
Incx = - Side + 2*Side/M*q # set x increment
Incy = - Side + 2*Side/M*p # set y increment
x = Incx
y = Incy
w = 0 # set starting escape modulus value
for n in range(1,Num):

xx = x*x - y*y - Cx
yy = 2*x*y - Cy
x = xx
y = yy
if x*x + y*y > Radius: # escape rate condition

w = n/N # escape modulus normalization
rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell
break # interrupt cycle

##
2D Newton’s method set random generation
Polynomial f(z)=z**6+1
(graphics module)
##

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module
import numpy as np # import numpy module
import random # import random module

Radius = .5 # set escape rate threshold
Cx = 0.0 # set initial x parameter shift
Cy = 0.0 # set initial y parameter shift
Side = .8 # set square area side
M = 300 # set side number of elementary squares
N = 1 # set color map scale factor
Num = 256*N # set number of cycles
sT=2 # set step jump

win = GraphWin("Newton’s method set", 5*M/3,5*M/3) # set window title
win.setBackground(color_rgb(230,220,10)) # set background color

def rectCol(p,q,w): # define elementary cell
Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),
Point(int(p+sT/2),int(q+sT/2)))
Rect.draw(win).setOutline(color_rgb(np.int(255*np.sin(w)**2),
np.int(255*np.cos(w)**2),np.int(255*np.cos(w/2)**2)))

Alternative values Cx 0.1747, 0.1747 Cy -.072,-1.072
Side 0.0015, 0.00015 Num 1024

i = 1 # set non-zero index value

Chapter 2 – Two-dimensional structures from algorithms 35

while i > 0: # set random co-ordinates choice cycles
p = random.randrange(1,M)
q = random.randrange(1,M)
Incx = - Side + 2*Side/M*q # set starting increment of x co-ordinate
Incy = - Side + 2*Side/M*p # set starting increment of y co-ordinate
x = Incx
y = Incy
w = 0 # set starting escape modulus value
for n in range(1,Num):

xx = 5*x/6.0 - x*(x*x*x*x - 10*x*x*y*y +5*y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0
yy = 5*y/6.0 + y*(5*x*x*x*x - 10*x*x*y*y + y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0
x = xx
y = yy
if (x-Cx)*(x-Cx) + (y-Cy)*(y-Cy) < Radius: # escape rate condition

w = n/N # escape modulus normalization
rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell
break # interrupt cycle

The iterating function system (IFS) generating natural ordered fractal structures

Another example of ordered structures generated by a random dynamics governed by a math-
ematical algorithmic information is o↵ered by the fractals obtained applying the Iterated
Function System (IFS). This method is employed, generally, to model shapes existing in
nature, like coast or mountain profiles, leaves, ferns, trees, clouds and so on. The recursion
law of the algorithm is characterized by a�ne transformations of type:

xp n+1 = ap xn + bp yn + cp, yp n+1 = dp xn + ep yn + fp, (2.7)

where ap, bp, cp, dp, ep, fp are constant coe�cients the value of which is chosen in a suitable
way in order to obtain the desired shape. This method introduces chance at the level of
the random probability p according to which each coe�cient value may occur. So, if e.g., a
randomly chosen p0 is greater than p1 and less than p2, the coe�cients will assume the values
ap1 , bp1 , cp1 , dp1 , ep1 , fp1 . While if a di↵erent random value p00 of the probability occurs, say, be-
tween p2 and p3 the coe�cients will be assigned to the di↵erent values ap2 , bp2 , cp2 , dp2 , ep2 , fp2 .
Then the law (2.7) is changed according to some chance criterion. Typical examples are the
fractal fern (fig. 21), the fractal tree (fig. 22), or the Sierpinski triangle (fig. 23).

Fig.21 - Fern generation steps (IFS method)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/FernIFS.m4v

36 A. Strumia, Information as order hidden within chance

Fig.22 - Tree generation steps (IFS method)

VIEW ANIMATION (requires internet connection)

Fig.23 - Sierpinski triangle generation steps (IFS method)

VIEW ANIMATION (requires internet connection)

The related computer codes of programs to generate such images are given below.

Python 3 codes to generate figs 21, 22 and 23

###############################
IFS fern random generation
(graphics module)
###############################

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module
import numpy as np # import numpy module
import random # import random module

Mxy=[[0.0,0.0,0.0,0.6,0.0,0.0,0.01], # assign probability matrix
[0.85,0.04,-0.04,0.85,0.0,1.6,0.85],
[0.2,-0.26,0.23,0.22,0.0,1.6,0.07],
[-0.15,0.28,0.26,0.24,0.0,0.44,0.07]]

a = [0,.85, .2, -.15] # assign affine transformations coefficients

http://albertostrumia.it/sites/default/files/Animations/TreeIFS.m4v
http://albertostrumia.it/sites/default/files/Animations/TriangleIFS.m4v

Chapter 2 – Two-dimensional structures from algorithms 37

b = [0, .04, -.26, .28]
c = [0, -.004, .23, .26]
d = [.16, .85, .22, .24]
e = [0, 0, 0, 0]
f = [0, 1.6, 1.6, .44]

M = 300 # set side number of elementary squares
Num = 30000 # set number of cycles
sT = 1 # set step jump

win = GraphWin("Fern", 2*M,2*M) # set window title
win.setBackground(’black’) # set background color

def rectCol(p,q,w): # define elementary cell
Rect = Rectangle(Point(np.int(p-sT/2),np.int(q-sT/2)),
Point(np.int(p+sT/2),np.int(q+sT/2)))
Rect.draw(win).setOutline(color_rgb(w,255-np.int(.5*w),
np.int(.5*w)))

x = 1 # set x initial value
y = 1 # set x initial value

for n in range(0,Num): # set random probabilities choice cycles
P = random.random()
if P <= Mxy[0][6]:

k = 0
elif P <= Mxy[0][6] + Mxy[1][6]:

k = 1
elif P <= Mxy[0][6] + Mxy[1][6] + Mxy[2][6]:

k = 2
else:

k = 3

xx = a[k]*x+b[k]*y+e[k] # affine transformation recursion cycle
yy = c[k]*x+d[k]*y+f[k]
x = xx
y = yy

rectCol(np.int(M+50*x),np.int(2*M-30-50*y),np.int(np.abs(20*y))) # plot elementary cell

win.getMouse() # wait for mouse click
win.close() # close window

###############################
IFS tree random generation
(graphics module)
###############################

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module
import numpy as np # import numpy module
import random # import random module

Mxy=[[0.195 , -0.488, 0.344 , 0.443 , 0.4431, 0.2452], # assign probability matrix
[0.462 , 0.414 , -0.252, 0.361 , 0.2511, 0.5692],
[-0.058, -0.07 , 0.453 , -0.111, 0.5976, 0.0969],
[-0.035, 0.07 , -0.469, -0.022, 0.4884, 0.5069],
[-0.637, 0 , 0 , 0.501 , 0.8662, 0.2513]]

38 A. Strumia, Information as order hidden within chance

Mxy=[[0.0,0.0,0.0,0.6,0.0,0.0,0.01],
[0.85,0.04,-0.04,0.85,0.0,1.6,0.85],
[0.2,-0.26,0.23,0.22,0.0,1.6,0.07],
[-0.15,0.28,0.26,0.24,0.0,0.44,0.07]]

a = [0,.42, .42, .1] # assign affine transformations coefficients
b = [0, -.42, .42, 0]
c = [0, .42, -.42, 0]
d = [.5, .42, .42, .1]
e = [0, 0, 0, 0]
f = [0, .2, .2, .5]

M = 300 # set side number of elementary squares
Num = 3000 # set number of cycles
sT = 2 # set step jump

win = GraphWin("Tree", 2*M,2*M) # set window title
win.setBackground(’black’) # set background color

def rectCol(p,q,w): # define elementary cell
Rect = Rectangle(Point(np.int(p-sT/2),np.int(q-sT/2)),
Point(np.int(p+sT/2), np.int(q+sT/2)))
Rect.draw(win).setOutline(color_rgb(w,255-w,np.int(.5*w)))

x = 1 # set x initial value
y = 1 # set x initial value

for n in range(0,Num): # set random probabilities choice cycles
k = random.randrange(0,4)

xx = a[k]*x+b[k]*y+e[k] # affine transformation recursion cycle
yy = c[k]*x+d[k]*y+f[k]
x = xx
y = yy

plot elementary cell
rectCol(np.int(M+600*x),np.int(2*M-100-600*y), np.int(n*128/Num+np.abs(100*(.8-y))))

win.getMouse() # wait for mouse click
win.close() # close window

##
IFS Sierpinski triangle random generation
(graphics module)
##

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module
import numpy as np # import numpy module
import random # import random module

a = [0.50, 0.50, 0.50] # assign affine transformations coefficients
b = [0.00, 0.00, 0.00]
c = [0.00, 0.00, 0.00]
d = [0.50, 0.50, 0.50]
e = [0.00, 0.00, 0.50]

Chapter 2 – Two-dimensional structures from algorithms 39

f = [0.00, 0.50, 0.50]

M = 300 # set side number of elementary squares
Num = 10000 # set number of cycles
sT = 1 # set step jump

win = GraphWin("Sierpinski triangle", 2*M,2*M) # set window title
win.setBackground(’black’) # set background color

def rectCol(p,q,w): # define elementary cell
Rect = Rectangle(Point(np.int(p-sT/2),
np.int(q-sT/2)),Point(np.int(p+sT/2),np.int(q+sT/2)))
Rect.draw(win).setOutline(color_rgb(w,w,0))

x = 1 # set x initial value
y = 1 # set x initial value

for n in range(0,Num): # set random probabilities choice cycles
k = random.randrange(0,3)

xx = a[k]*x+b[k]*y+e[k] # affine transformation recursion cycle
yy = c[k]*x+d[k]*y+f[k]
x = xx
y = yy

rectCol(np.int(np.int(.2*M)+500*x),np.int(2*M-50-500*y),255) # plot elementary cell

win.getMouse() # wait for mouse click
win.close() # close window

2.2.2 Remark

The generation of an ordered structure starting from random initial conditions seems espe-
cially interesting in order to model biological entities (cells, organs, etc.). In fact a living
ordered structure seems to appear, quite magically, by random process and arise by chance.
Actually chance involves only the initial conditions and perhaps some of the subsequent bi-
furcations of the generation process dynamics, while some information hidden into, e.g., the
DNA and other supports, governs the entire generation dynamics. Such information may
probably be hidden into some very complex string, or a nested structure of strings which
partly is able to write its code step by step, as an unfolding strip.

2.3 Non-computable 2D structures

Only for some special structures15 one is able to find a mathematical formula (law) which
allows to define a sort of essence of some entity (body or system), which may be coded into a
string shorter than the mere list of the co-ordinates of each point of the body or system itself.
We have seen, in the previous sections, the examples of 2D fractals as significant structures.

15Some of those structures are well known and have been deeply studied.

40 A. Strumia, Information as order hidden within chance

Very many situations are known such that a compact formula cannot be found

– either because of some technical di�culties

– or for principle reasons.

In the former case one may always hope that in future a skillful and lucky researcher will be
able to grasp such hidden law. In the latter case this lucky circumstance will be impossible,
since the Gödel’s number representing this formula is non-computable and the associated
proof of the law results undecidable within the axiomatic system. According to computer
science language one says that the string of the list of all the co-ordinates of the system
points results to be incompressible and no regular order appears examining the sequence of
the digits of the string, or the map of the points representing them geometrically. In some
situation the compression of the string may be made locally, thanks to some technical trick,16

but it does not exist a global unique formula (shorter string) compacting the whole structure
of the system, defining it as a sort of essence.

2.3.1 Sequential process generating a map of prime numbers

An interesting example of non-compressible string seems to be o↵ered (at least until now) by
the sequence of the prime numbers.17

In fact, at least at present, we do not know any law to generate a number formed by the
sequence of the first n prime numbers, shorter than the full list of those number themselves;
like e.g., the number built by the sequence of the first 5 numbers greater than 2. The first
5 prime numbers greater than 2 are 3, 5, 7, 11, 13 and the number resulting is 3571113. In
similar situations an ordered dynamics as the sequential scanning of a region of the Cartesian
plane does not seem to produce any order. In the following figures we have plotted a portion
of the Cartesian plane in such a way that

– red pixels are associated to points the absolute values of the co-ordinates of which are
both prime numbers;

– green pixels are related to points of prime abscissa and non-prime ordinate;

– blue pixels are related to points of non-prime abscissa and prime ordinate;

– white pixels are related to points the co-ordinates of which are both non-prime numbers.

In particular, in fig. 24 the dynamics generated the plot is sequentially ordered, while in
fig. 25 the dynamics generating the plot is random. In both cases the co-ordinates of each
point are to be evaluated individually since there is no recursion formula allowing to generate
the subsequent prime number starting from a known one. We point out that notwithstanding

16Generally the compression methods of image or text files are based on such local expedients which allow
to shorten, e.g. a sequence of identical digits.

17We remember that a natural number n is said to be prime if it allows as exact divisors only the unit (1)
and itself (n).

Chapter 2 – Two-dimensional structures from algorithms 41

that the figure is plotted according to some symmetry criterion, since for each pair of prime
numbers (x, y) we plot four symmetric points of co-ordinates (x, y), (�x, y), (x,�y), (�x,�y),
the visual perception of such symmetries is gradually lost being overridden by the randomness
of the prime number sequence.

Fig.24 - Prime numbers sequential generation steps

VIEW ANIMATION (requires internet connection)

Python 3 code to generate images in fig. 24

###########################
Prime numbers > 2
sequential generation
(graphics module)
###########################

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module
import numpy as np # import numpy module

M = 253 # set side number of elementary square (max number to be checked)
sT=1 # set step jump

P = np.zeros(M) # x co-ordinate array
Q = np.zeros(M) # y co-ordinate array
r = np.zeros([M,M]) # zero red color matrix
g = np.zeros([M,M]) # zero green color matrix
b = np.zeros([M,M]) # zero blue color matrix

win = GraphWin("Prime set (sequential)", int(10*M/3),int(10*M/3)) # set window title
win.setBackground("black") # set background color

def rectCol(p,q,R,G,B): # define elementary cell
Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),Point(int(p+sT/2),
int(q+sT/2)))
Rect.draw(win).setOutline(color_rgb(R,G,B))

for p in range(3,M,2): # x sequential cycle

http://albertostrumia.it/sites/default/files/Animations/PrimeSQ.m4v

42 A. Strumia, Information as order hidden within chance

for q in range(3,M,2): # y sequential cycle
j = 3 # set initial prime number
Wp = 1 # set default x control index
Wq = 1 # set default y control index

while j < p and j < q: # prime number checking cycle
if p%j != 0:

WWp = 1
Wp = Wp*WWp # ensures that no quotient is exact

else:
WWp = 0
Wp = Wp*WWp # ensures that no quotient is exact

if q%j != 0:
WWq = 1
Wq = Wq*WWq # ensures that no quotient is exact

else:
WWq = 0
Wq = Wq*WWq # ensures that no quotient is exact

j = j + 2

if (Wp == 1 and Wq == 1): # red color select conditions
P[p] = p
Q[q] = q
r[p,q] = 255
g[p,q] = 0
b[p,q] = 0

elif (Wp == 1 and Wq == 0): # green color select conditions
P[p] = p
Q[q] = q
r[p,q] = 0
g[p,q] = 255
b[p,q] = 0

elif (Wp == 0 and Wq == 1): # blue color select conditions
P[p] = p
Q[q]
r[p,q] = 0
g[p,q] = 0
b[p,q] = 255

elif (Wp == 0 and Wq == 0): # white color select conditions
P[p] = p
Q[q] = q
r[p,q] = 255
g[p,q] = 255
b[p,q] = 255

for q in range(3,M,2): # sequential plot cycles
for p in range (3,M,2):

rectCol(int(5*M/3-P[p]),int(5*M/3+Q[q]),
np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))
rectCol(int(5*M/3+P[p]),int(5*M/
3+Q[q]),np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))
rectCol(int(5*M/3+P[p]),int(5*M/3-Q[q]),
np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))
rectCol(int(5*M/3-P[p]),int(5*M/3-Q[q]),
np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))

win.getMouse() # wait for mouse click
win.close() # close window

Chapter 2 – Two-dimensional structures from algorithms 43

2.3.2 Random process generating a map of prime numbers

Here are the images and code related to ordered pairs of prime number generation according
to a random choice of initial conditions. Neither sequentially ordered nor random dynamics
seems to generate order.

Fig.25 - Prime numbers random generation steps

VIEW ANIMATION (requires internet connection)

Python 3 code to generate images in fig. 25

#######################
Prime numbers > 2
random generation
(graphics module)
#######################

specify the absolute path of mod graphics folder (depends on user’s choice)
import sys
sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module
import numpy as np # import numpy module
import random as rd # import random module

M = 253 # set side number of elementary square (max number to be checked)
sT=1 # set step jump

P = np.zeros(M) # x co-ordinate array
Q = np.zeros(M) # y co-ordinate array

r = np.zeros([M,M]) # zero red color matrix
g = np.zeros([M,M]) # zero green color matrix
b = np.zeros([M,M]) # zero blue color matrix

win = GraphWin("Prime set (random)", int(10*M/3),int(10*M/3)) # set window title
win.setBackground("black") # set background color

def rectCol(p,q,R,G,B): # define elementary cell

http://albertostrumia.it/sites/default/files/Animations/PrimeRD.m4v

44 A. Strumia, Information as order hidden within chance

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),Point(int(p+sT/2),
int(q+sT/2)))
Rect.draw(win).setOutline(color_rgb(R,G,B))

for p in range(3,M,2): # x sequential cycle
for q in range(3,M,2): # y sequential cycle

j = 3 # set initial prime number
Wp = 1 # set default x control index
Wq = 1 # set default y control index

while j < p and j < q: # prime number checking cycle
if p%j != 0:

WWp = 1
Wp = Wp*WWp # ensures that no quotient is exact

else:
WWp = 0
Wp = Wp*WWp # ensures that no quotient is exact

if q%j != 0:
WWq = 1
Wq = Wq*WWq # ensures that no quotient is exact

else:
WWq = 0
Wq = Wq*WWq # ensures that no quotient is exact

j = j + 2

if (Wp == 1 and Wq == 1): # red color select conditions
P[p] = p
Q[q] = q
r[p,q] = 255
g[p,q] = 0
b[p,q] = 0

elif (Wp == 1 and Wq == 0): # green color select conditions
P[p] = p
Q[q] = q
r[p,q] = 0
g[p,q] = 255
b[p,q] = 0

elif (Wp == 0 and Wq == 1): # blue color select conditions
P[p] = p
Q[q]
r[p,q] = 0
g[p,q] = 0
b[p,q] = 255

elif (Wp == 0 and Wq == 0): # white color select conditions
P[p] = p
Q[q] = q
r[p,q] = 255
g[p,q] = 255
b[p,q] = 255

i = 1 # set non-zero control paramter value
while i > 0: # random point selection cycles

p = rd.randrange(1,M,2)
q = rd.randrange(1,M,2)

plot cell
rectCol(int(5*M/3-P[p]),int(5*M/3+Q[q]),
np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))
rectCol(int(5*M/3+P[p]),int(5*M/
3+Q[q]),np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))
rectCol(int(5*M/3+P[p]),int(5*M/3-Q[q]),

np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))
rectCol(int(5*M/3-P[p]),int(5*M/3-Q[q]),
np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))

