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Introduction

“There is no science on singulars (Latin, scientia non est de singularibus”[1]), because human
science is a knowledge through universals. In fact the human intellect acquires its knowledge
abstracting from matter the universal form organizing each singular “matter” body. So our
mind, being “immaterial”, does not know singulars, while our senses do, being “material” as
part of our “matter” body.

Surprisingly the latter principle, which was well known by Aristotle and mediaeval authors
like Thomas Aquinas and his followers, seems to be attained in some way, at least in some of
its aspects and through a different way, by our contemporary logicians, mathematicians and
experts of information theory.

Knowing universally, in terms of our informational logic, appears to mean the capability
to find a law or an algorithm the string code of which is shorter than the list of all individual
entities when they are singularly collected in a set. So modern science seems to have redis-
covered, in some sense, the ancient Aristotelian-Thomistic principle according to which not
all the entities may be described (logic, cognition, science) or built (ontology, metaphysics,
physics) by an algorithm (string shorter than the list of individuals). In fact there are entities,
the string describing which cannot be other than the list of each single entity (incompressible
string). Or, in terms of propositions, not any proposition (string) is decidable (by means of
a theorem) within an axiomatic system (undecidability), since it cannot be reduced to the
string of the axioms, according to the well known Gödel’s undecidability theorem.[2]

Only a divine mind can know all singular details of an entity. While our human mind
knows through universals, so it cannot find an algorithm describing all entities (whole the-
ory or theory of everything) and all aspects of each of them. Only divine mind which
knows/creates each single entity, both according to a universal form and to each individ-
ualizing matter, is able to catch all singular details.

Aquinas offered a logico-metaphysical explanation of such a difference between human
and divine science.

The reason for this will be clear if we consider the difference between the relation
to the thing had by its likeness in our intellect and that had by its likeness in the
divine intellect. For the likeness in our intellect is received from a thing in so far
as the thing acts upon our intellect by previously acting upon our senses. Now,
matter, because of the feebleness of its existence (for it is being only potentially),
cannot be a principle of action; hence, a thing which acts upon our soul acts only
through its form; consequently, the likeness of a thing which is impressed upon

1



2 A. Strumia, Information as order hidden within chance

our sense and purified by several stages until it reaches the intellect is a likeness
only of the form.[3]

On the other hand, the likeness of things in the divine intellect is one which causes
things; for, whether a thing has a vigorous or a feeble share in the act of being, it
has this from God alone; and because each thing participates in an act of existence
given by God, the likeness of each is found in Him. Consequently, the immaterial
likeness in God is a likeness, not only of the form, but also of the matter. Now, in
order that a thing be known, its likeness must be in the knower, though it need
not be in him in the same manner as it is in reality. Hence, our intellect does
not know singulars, because the knowledge of these depends upon matter, and the
likeness of matter is not in our intellect. It is not because a likeness of the singular
is in our intellect in an immaterial way. The divine intellect, however, can know
singulars, since it possesses a likeness of matter, although in an immaterial way.1

The sequence of such singular elements of a whole appears to us as completely random,
since we cannot – because of principle reasons and not only because of technical difficulties
– deduce by a rule (algorithm) any of the next element starting from the knowledge of the
previous ones. But the datum of the incompressibility of a string, which we perceive as
randomness, does not mean non-sense of that string, but simply that it is self-explained
being reason to itself and therefore it needs no further explanation, being a fundamental law,
even though rather complex. As Gregory Chaitin has observed:

for example, a regular string of 1s and 0s describing some data such as
0101010101 · · · which continues for 1000 digits can be encapsulated in a shorter
instruction “repeat 01 500 times”. A completely random string of digits cannot be
reduced to a shorter program at all. It is said to be algorithmically incompressible
([4] pg 141).

1“Cuius ratio manifeste apparet, si consideretur diversa habitudo quam habent ad rem similitudo rei quae
est in intellectu nostro, et similitudo rei quae est in intellectu divino. Illa enim quae est in intellectu nostro,
est accepta a re secundum quod res agit in intellectum nostrum, agendo per prius in sensum; materia autem,
propter debilitatem sui esse, quia est in potentia ens tantum, non potest esse principium agendi; et ideo
res quae agit in animam nostram, agit solum per formam. Unde similitudo rei quae imprimitur in sensum
nostrum, et per quosdam gradus depurata, usque ad intellectum pertingit, est tantum similitudo formae. The
reason for this will be clear if we consider the difference between the relation to the thing had by its likeness
in our intellect and that had by its likeness in the divine intellect. For the likeness in our intellect is received
from a thing in so far as the thing acts upon our intellect by previously acting upon our senses. Now, matter,
because of the feebleness of its existence (for it is being only potentially), cannot be a principle of action;
hence, a thing which acts upon our soul acts only through its form; consequently, the likeness of a thing which
is impressed upon our sense and purified by several stages until it reaches the intellect is a likeness only of
the form. Sed similitudo rerum quae est in intellectu divino, est factiva rei; res autem, sive forte sive debile
esse participet, hoc non habet nisi a Deo; et secundum hoc similitudo omnis rei in Deo existit quod res illa
a Deo esse participat: unde similitudo immaterialis quae est in Deo, non solum est similitudo formae, sed
materiae. Et quia ad hoc quod aliquid cognoscatur, requiritur quod similitudo eius sit in cognoscente, non
autem quod sit per modum quo est in re: inde est quod intellectus noster non cognoscit singularia, quorum
cognitio ex materia dependet quia non est in eo similitudo materiae; non autem propter hoc quod similitudo
sit in eo immaterialiter: sed intellectus divinus, qui habet similitudinem materiae, quamvis immaterialiter,
potest singularia cognoscere”, Thomas Aquinas, De veritate, q. 2, a. 5co. Latin text in [1].
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That notwithstanding, in some relevant and not so rare circumstance, the whole may
reveal an order and an organized structure, capable to perform special activities (operations)
as it happens, e.g., in biological living systems, or even in some physical and chemical complex
systems. At present we do not know any compressed string (law or algorithm) capable to
generate the actual sequence of the genetic code of a living being and we are compelled to
list its individual elements one after the other as if they were provided randomly by nature.
Something similar happens in the context of arithmetic when we deal with prime numbers,
the sequence of which appears randomly distributed into the ordered set of natural numbers.

An intensive discussion is animating the scientific world about the logical consistency of
the idea itself of a theory of everything. A relevant example of different opinions about the
matter is offered, e.g, by the contemporary debate between Stephen Wolfram and Gregory
Chaitin. Wolfram is convinced that

in the end it will turn out that every detail of our universe does indeed follow
rules that can be represented by a very simple program – and that everything we
see will ultimately emerge just from running this program ([5] pg 545).

Wolfram’s conviction seems to arise by his deep experience with cellular automata, which
may evolve into very complex structures, even being governed by very simple algorithmic
rules.

In the existing sciences whenever a phenomenon is encountered that seems com-
plex it is taken almost for granted that the phenomenon must be the result of
some underlying mechanism that is itself complex. But my discovery that simple
programs can produce great complexity makes it clear that this is not in fact
correct. And indeed in the later parts of this book I will show that even remark-
ably simple programs seem to capture the essential mechanisms responsible for
all sorts of important phenomena that in the past have always seemed far too
complex to allow any simple explanation.

It is not uncommon in the history of science that new ways of thinking are what
finally allow longstanding issues to be addressed. But I have been amazed at just
how many issues central to the foundations of the existing sciences I have been
able to address by using the idea of thinking in terms of simple programs ([5]
pg 4).

While on the contrary Chaitin considers random strings (incompressibile strings) as ad-
missible in nature as indecidable propositions exist in an axiomatic system.

Wolfram has a very different view of complexity from mine. [. . . ] Wolfram’s view
is that simple laws, simple combinatorial structures can produce very complicated
unpredictable behavior. π is a good example. If you didn’t know where they come
from its digits would look completely random. In fact, Wolfram says, maybe the
universe contain non randomness, maybe everything is actually deterministic,
maybe its only pseudorandomness. And how could you tell the difference? The
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illusion of free will is because the future is too hard to predict but its not really
unpredictable ([6] pg 113).

In the present report we try to show how some complex – even if relatively simple or
simplified – ordered structures may arise:

– either by already ordered initial conditions

– or by random initial conditions, provided that a suitable information (law/algorithm)
is assigned, governing the evolution of the system.

When such law (shorter string) is not known the full list (uncompressed2 string) of the
elements involved in the structure of the system must be assigned in order to simulate the
generation process of the system either assigning sequentially ordered initial conditions or
random initial conditions.

We emphasize that the probability to reach a final ordered structure simply starting from
random points, if some information coded in a suitable string (it does not matter if compressed
or incompressible) is not provided is practically zero in presence of a great number of elements
as in our universe. So we could say that order (information) may be hidden within chance
but not completely suppressed.

Ordered structures appear as attractors towards which the generation process tends even
when the initial conditions are chosen randomly within a basin of attraction. An intriguing
investigation might be based on the conjecture that universe could be modeled as a huge
attractor involving minor nested attractors (the galaxies) nested in turn with inner attractors
along a chain reaching living individuals and so on, down to cells, molecules, atoms and
elementary particles.

At present we do not know if living systems and some physical complex systems are
fully determined by algorithms (compressed strings) or, at least, some of their properties are
governed by full lists of instructions (incompressible strings).

But we may guess that the light differentiations among the bodies of individuals of the
same species can be generated, when genetic code is identical (as it happens for true twins),
thanks to the random bifurcations own to the non-linearity of the laws governing body
generation.

In our report we show and discuss some examples of ordered structures one is able to
generate by simple computing programs, either coded into compressed strings, or into un-
compressed data files.3

The exposition will be developed according the following order.

– Chapter 1 will introduce didactically some of the nowadays topics about the evolution
of the notion of information which was born in communication engineering and now

2May be that in future one will be able to compress such a string thanks to some algorithm or, on the
contrary, will be able to show its incompressibility.

3At present we do not know if those data files are to be considered incompressible or if they might be
compressed in future thanks to a non-trivial algorithm, i.e., a global mathematical law and not by local
shortcuts similar to those employed to reduce graphic files dimension.
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has become relevant in physics and mainly in biology. On an interdisciplinary view-
point some meaningful philosophical reflections by some authors will be quoted, adding
also our own reflections, in order to compare contemporary notion of information and
Aristotelian form.

– The other chapters of the report will be devoted all to show how several examples of ordered
structures may be generated following either ordered processes or random processes,
provided that we know enough information (law) to characterize their own properties.
Each example will be presented both by images and by the related programming code
written in Python 3 or in POV-Ray 3.7 ray tracing language.

In particular we consider each structure:

= as a whole, when it just appears complete as a final result of some code execution
(algorithmic information);

= as generated sequentially, point by point, according to an ordered assignment of
the initial conditions of a computing process driven by the same information, so
that it results that order arises from order ;

= as generated randomly, as an attractor defined by the same information as before,
but starting from initial conditions chosen completely by chance within a suitable
basin of attraction;

= as generated by a cellular automaton, the replication rule of which is provided by
the same information as in previous examples, while the choice of the contiguous
place where each daughter cell is be generated is random.

– Chapters from 2 to 7 will be devoted to examples arising from fractal geometry (in partic-
ular Mandelbrot sets, Julia sets, and Newton’s method sets). In detail:

= in chapter 2 we examine 2D fractal structures;

= in chapter 3 we deal with different techniques to accomplish the passage from 2D
to 3D shapes either as wholes or as generated point by point;

= in chapter 4 we show how to obtain fractal landscapes, which are the simplest way
of 3D fractal rendering, since the third dimension (height) is given simply by a
suitable function of the escape rate characterizing the process generation;

= in chapter 5 we attack the main difficulty in representing a genuine fractal shape
in three dimensions. The solution is provided by assigning lower and upper limit
conditions in order to identify a fractal shell to be built and represented point by
point. The chapter will deal with cylindrical symmetry shapes obtained through a
complete rotation of a 2D fractal around a symmetry axis. The rendering quality
of images will be greatly increased employing a ray tracing language as POV-Ray
3.7, rather than Python 3 ;

= in chapter 6 we apply the methodology proposed in the previous chapter to more
general (i.e., even non-cylindrically symmetric) 3D shapes, generated recurring to
quaternions and hypercomplex numbers. The graphical results are fascinating;
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= in chapter 7 we present our main original result which is related to the generation
of 3D shapes by cellular automata with random choice of the daughter cell near
location. The chapter applies the methodology to 3D fractals.

– The last two chapters of the report are devoted to applications to biology. In particular:

= in chapter 8 we propose a sort of rough model of a human heart external shape
generation, cell by cell, following some of the methodologies applied to fractals in
the previous chapters;

= in chapter 9 a more realistic heart external shape model of cell by cell heart
generation by cellular automata is finally presented, based on a public data list
(non compressed string) one can find on the web.

– Some conclusive remarks end the report.



Chapter 1

Today’s information towards
Aristotelian form
New perspectives on information in mathematics, physics
and biology

In this first chapter we intend to introduce some elementary notions about the increasingly
meaningful role of information in the context of the biological sciences, starting from the
early decades of the 21st century.1 A role which seems to involve both the question on the
evolution of species and the matter of the emergence of life. In a wider sense information
is playing a significant role in order emergence (self organization) of the structure and the
dynamics of physical and biochemical complex systems.

Nowadays we can see biologists, non-linear systems physicists, computer scientists and
philosophers collaborate in a same research group in order to investigate new simulation
models and theories about emergent life, organ formation in a body and mutations of species.
Most of these topics involve relevant philosophical problems related to the possibile and
unavoidable quest for an ontological interpretation of such theories beside to suggest heuristic
paths orienting the research.

People are now especially interested in proposing some definition of information which
is more fundamental and relevant than the traditional one arisen in the field of noise free
communication engineering. Significant steps have been carried out thanks to the analogy
recognized between information and negative thermodynamic entropy, when non-equilibrium
thermodynamics of open systems exchanging matter energy and information with the envi-
ronment was developed by several authors. In the latter context the emergence of ordered
structures within the physical open thermodynamic systems, governed by a sort of theleo-
nomic dynamics, has oriented the researches to test how such thermodynamical systems could
provide models for biological organisms and life emergence. Meanwhile the non-linear me-
chanics of dynamic systems discovered the existence of the attractors, i.e. solutions towards

1I dealt with this subject for the first time in the last chapter of my book [7] to which the present chapter
is largely inspired.

1



2 A. Strumia, Information as order hidden within chance

which all the trajectories, the initial conditions of which belong to a suitable basin of attrac-
tion, tend for time increasing values. Such attractors may be stable or unstable depending
of the parameters characterizing each of them and may switch from stability to instabil-
ity in correspondence to the parameters value switching. A comparison between a similar
behavior and and the change from life to death of a living system was considered as straight-
forward. Moreover some properties of a non-linear system appeared as global (holistic) and
not reducible to a sort of summation of more elementary local (reductionistic) properties.

So the idea that some information characterizing the structure and the dynamics of the
whole, which is not deducible starting from the properties of its single parts as if they were
independent of the whole, suggested quite naturally to compare our contemporary notion of
information with the ancient but always fascinating notion of Aristotelian form.

Those ideas have been applied also to the species of living beings and not only the indi-
vidual and the question

– if a sort of information may somehow orient the evolution of species, involving attractors
and repellers, even if the initial conditions are determined by chance

– or if only chance and natural selection are enough to explain evolution.

At present two schools of thinking are in competion:[8]

– The former school defends a neo-Darwinian position according to which the only random
genetic mutations are enough to explain an evolution improving the qualities of species
by spontaneous emergence of new information.

– The latter, on the contrary, suggests that chance may not be enough to explain a
gain (evolution) in the level in species, since an adequate cause is required in order
to activate the emergence of new information from the potentiality of matter2 as, in a
greatly different historical and cultural context Aristotele proposed.

Therefore an increasing interest in Aristotelian doctrine of form appears today no more
so peregrine as it was only until some decades ago.

Surprisingly experimental investigations and mainly computer simulations provide rele-
vant results supporting the ideas of the second stream of thinking.

– In fact simulations show that the great majority of random mutations are not of ad-
vantage for the species since they do not improve the ability to survive of the mutant
individuals and only very few do. Moreover a sort of increasing genetic entropy ac-
companies mutations which destroys information rather than increasing it. A situation
resembling the behavior of thermodynamic entropy the increasing of which, according
to the second principle, decreases the power of heat in order to be transformed into
mechanical work. Random genetic mutations cause more disorder (loss of information)
than order (organization).

2See[8] General Introduction, pgs xiii-xix.
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– Moreover the mutations result not to be genetically permanent, since they disappear in
the descendants after few generations. In practice it has been shown that a threshold
(minimum number of mutant individuals) exists under which the effect of mutations
(either damaging or improving) extinguish after few generations.[9]

– Computer simulations, at least until now,3 has provided results which seem not to be
favorable to a merely random mechanism of a process improving the species.

Then the researchers have been induced to examine in more depth the notion of infor-
mation as a new immaterial factor playing an essential role, even if not yet well understood,
either in governing the evolution of species and the birth of life and the emergence of an
ordered structure in complex systems. In this framework at least two main problems arise.

– How to define information and how to try to provide a model of information behavior?

– Which is the cause of emergence of information in material systems (i.e., systems
carrying mass and energy)?4

The reductionistic and materialistic approach attempting to explain information as a
mass-energy phenomenon, identifying it with its material carrier, has been just universally
recognized as inadequate to describe experience. As a matter of fact we experience every day
how information can be transferred from some material support to any other one, without
alteration of its informational content. Since the early times of telecommunications and
cybernetics it appeared as an evidence what Norbert Wiener (1894-1964), one of the fathers
of information theory, said:

Information is information, not matter or energy. No materialism which does not
admit this can survive at the present day ([12] pg 132).

1.1 Heuristic operative definitions of information

We can easily recognize an increasing progression along the history of the attempts to achieve
a proper definition of information. Starting from the early purely descriptive definitions,
based on a physical and statistical approach as it was suggested by a comparison with ther-
modynamics and statistical mechanics, further steps were made in order to formulate more
abstract and causally explicative definitions. In literature we may find references at least to
the following kinds of theories of information and related definitions:

– the classical theory of information;

– the theory of specified complex information;

3For instance we may mention computer programs like Tierra, Mendel and Avida simulating random
mutations involved in species evolution.[10] [11]

4According to an Aristotelian way of speaking we could say: which is the adequate cause of the eduction of
the form from matter potency?
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– the algorithmic theory of information;

– the universal theory of information;[13]

– la the pragmatic theory of information which is concerned to the cost of the machineries
and networks required to process information.[14]

Here we will examine some of the previous definitions which seem to be more relevant
even for their philosophical implications.

We remark that none of those definitions appear to be exhaustive. So their approach to
the notion of information is to be considered as heuristic, operative, in progress, in oder to
attempt to reach a more deeply essential5 definition. Together to all those efforts it proves
to be useful and somehow clarifying to take into account also the notion of Aristotelian form.

1.1.1 The classical theory of information

The classical theory of information, originally own to Claude Shannon (1916-2001) is based
on the statistical mechanics with the engineering purpose of softening as possibile undesired
signals (noise) emphasizing, on the contrary, the carrier of the relevant information to be
transmitted by a sender to a receiver. For this aim it proves to be enough and very efficient
to restrict the object of investigation to the syntactic statistical analysis of the material
symbols required to data transmission, e.g along cables or aether, their storage into physical
memories and their processing.

The basic original idea of Shannon was that of relating the notion of information to the
probability of some event to happen or not, the behavior of which seemed to him very similar
to that of the negative thermodynamic entropy. So he conjectured a definition of information
as:

I = − logb P, (1.1)

I being interpreted as a measure of information, P the probability of the event occurrence
and b the basis of the numeric code employed.

If a very likely event happens we gain a very law information. On the contrary if it does
not occur (or its contrary happens) we are more informed and almost compelled to a deeper
investigation about that phenomenon. The formula is assumed to be the same as that which
characterizes the thermodynamic entropy, except for the minus sign ([15] §IV).

1.1.2 The theory of complex specified information

The theory of complex specified information proposed by William Dembsky (b. 1960) adds
to the classical information theory a sort of finality criterion orienting chance to reach some

5When we say essential we mean a definition catching what information is properly in itself and not only
when it is related to aspects coexisting with it, like the string by which it is coded, the different kinds of
memories on which it is stored, the costs required for it to be processed, and so on.
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result at the end of a process. The main problem a similar approach is the lack of a math-
ematical or symbolic formalization of that theleonomic factor which remains an extrinsic
philosophical conjecture. Therefore such a theory is often evaluated as non-scientific as the
entire approach of the so called intelligent design ([13] pg 17).

Finality may enter legitimately within a scientific theory if it results to be a part or a
consequence (e.g, as a mathematical solution) of the laws (equations) governing a complex
system (physical, biological or other, [16] §VI, 1). In any case, the existence of an element
external to a theory needs to be demonstrated as a logical consequence of the internal axioms
of the theory itself, which is required to avoid internal contradictions.

1.1.3 The algorithmic theory of information

At present it seems to me that the approach of the algorithmic theory of information, ade-
quately enriched by a semantic interpretation and content, is the most promising one, for the
development of a mature scientific theory of information contributing to physics of complex
systems and biology, and even to philosophy.

The theory of algorithmic information, proposed and enriched by Ray Solomonoff (1926-
2009), Andrej Nikolaevi Kolmogorov (1903-1987) an Gregory Chaitin (b. 1947), is concerned
with complexity – as it is suitably defined within the theory itself – of the symbols involved
in data and object structures.

First of all a definition of algorithm is required.

An algorithm is a sequence of operations capable of bringing about the solution
to a problem in a finite number of steps ([15] §V).

Such definition is enough wide to host different kinds of algorithms involving different
levels of information, progressively approaching to the Aristotelian notion of form. We will
examine, by means of some examples, the methodological and epistemological relevance of
the corresponding different levels and some implications for biology, foundation theory and
even philosophy.

1.2 Some examples of algorithms

We limit ourselves to three simple well known examples of algorithm emphasizing the different
level of information involved in each one.

– The first level consists in a simple sequence of operations to be executed in order to
solve some problem. In this case the kind of information involved is merely operational
and does not involve any sort of definition of some entity. On an Aristotelian-Thomistic
point on view it looks like the description of an accidental mutation of some entity built
as a cluster (aggregate) of substances which is not endowed of a unique substantial form.

– The second level, as we will see, is ontologically more relevant, since it actually defines
an entity determining its structure. Philosophically we can say that the information



6 A. Strumia, Information as order hidden within chance

involved in the algorithm properly defines the essence of an entity, just as an Aristotelian
form.

– The third level also defines an entity characterizing the dynamics which generates its
structure, rather than defining immediately the structure as a whole. According to
the Aristotelian-Thomistic terminology we say that the information involved in the
algorithm specifies the nature of the generating information.

Let us now examine those examples.

1.2.1 Algorithm to exchange the liquid contained in two different glasses

Let us consider two glasses, say A and B, filled respectively of water and wine. We want to
transfer the water from A into B and vice versa.

A,B → B,A

The problem is easily solved with the aid of a third empty glass C. Then the required
algorithm is the following:

1) pour the water contained in A into C: A→ C,
2) pour the wine contained in B into A: B → A,
3) pour the water now contained in C into B: C → B

Fig.1 - Exchange the liquid contained in two glasses

At the end of the procedure the desired exchange will result. The water which was into
A will have been transferred into B and the wine originally in B will be now in A.

The algorithm, simply, describes an operative procedure which provides a mutation (be-
coming), while it does neither define nor give consistency (being) to an entity.

Let us now examine a second kind of algorithm which, on the contrary, is actually able
to define the structure (essence) of a new entity.
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1.2.2 Algorithm to generate a fractal

Roughly speaking we can characterize a fractal as an infinitely rippled curve or surface the
level of complexity of which is preserved at any magnification scale.6

What is remarkable is the circumstance that the mathematical computation generating
a fractal, beside providing an operational procedure, properly defines and in the same time
actuates constructively its entity.

Among all fractals we choose here, as an example, a typical Julia set (the dragon). The
algorithm is the following.

– We consider a complex number;7 z0 = x0 + i y0 the real part (x0) and the imaginary
part (y0) of which run inside a suitable interval: [−l, l ];

– we choose another complex number c = a+ i b which is maintained constant along the
whole procedure, as an identifier of the Julia set itself. In the example of fig. 2 we have
set c = 0.27334 + i 0.00642;

– we define a sequence of complex numbers zn = xn + i yn, n = 0, 1, 2, · · ·, the initial
term of which is just z0 and each next number is obtained adding c to the previous one
squared. We have so the recurrence rule:

zn+1 = z2n + c, (1.2)

– we take the sum of a significantly high number of subsequent terms of the sequence;8

– At the end we evaluate the absolute value h of the sum obtained:9.

h =

∣∣∣∣∣
n∑
k=0

zk

∣∣∣∣∣ > R. (1.3)

If h is greater than a suitable value R, before established, we paint on a computer
display a pixel of co-ordinates (x0, y0) with a precise color (or respectively a gray level)
of a suitable color map (or grayscale).

Manifestly the algorithm beside providing an operating procedure defines essentially the
structure of a new entity, namely a Julia set, while constructing it.

6Fractals are more precisely classified considering their fractal dimension, a measure of the fraction
of plane or space they fill when they are considered as wholes. One may see, e.g., my Fractal Gallery
(www.albertostrumia.it/?q=content/galleria-di-frattali-fractal-gallery) beside several papers and books with
astonishing pictures of fractals.

7We remember that a complex number has the general form z = x + i y where x, y are two real numbers
and i is the imaginary unit, i.e., a number the square of which is, by definition, −1.

8In principle the infinite series of all the terms of the sequence should be taken. In practice, on a computer
a finite number of terms can be added. The greater is the number, the better will result the details in the
picture.

9We remember that the absolute value or modulo of a complex number z = x+iy is given by |z| =
√

x2 + y2.

http://www.albertostrumia.it/?q=content/galleria-di-frattali-fractal-gallery
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z0
↓

z1 = z20 + c
↓

z2 = z21 + c
↓

z3 = z22 + c
· · · · · · · · · · · ·

c = 0.27334 + i 0.00642

Fig.2 - Generation of a Julia set

1.2.3 Algorithm to determine a fractal basin of attraction of a chaotic
magnetic pendulum

Our third example is provided by physics rather than mathematics. It consists also in a
fractal set the structure of which results as an effect of the chaotic dynamics governing a
magnetic pendulum driven by three magnets located in the vertices of an equilateral triangle.

Fig.3 - Fractal basin of attraction of a chaotic magnetic pendulum

The motion of the pendulum appears to be random at all when it is observed at some
time interval and with no regularity or order. Each trajectory seems to end onto one of
the magnets without any choice criterion. That notwithstanding the dynamics is driven by a
precise information arising from the laws of physics, since the arrival magnet depends exactly
on the starting point from which the pendulum is initially released.

The pendulum dynamics being complex – determined by non-linear laws – it results to be
strongly sensitive to the initial conditions. The starting point being even slightly displaced,
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Fig.4 - A chaotic trajectory of a magnetic pendulum

the arrival magnet may change. So the basin of attraction (set of the initial conditions)
related to the dynamics of the pendulum, exhibits a quite precise fractal structure.

We point out that, in the present example the information which determines the fractal
structure of the basin of attraction is determined through the dynamics of motion.

Graphically the fractal basin is painted assigning distinct colors (or gray levels) dependent
on the arrival magnet of the pendulum.

Fig.5 - Sketch of a magnetic pendulum

1.2.4 Remark

We want to emphasize, now, that people investigating algorithmic information are generally
interested in defining the quantity of information involved into a computer program algo-
rithm, which is viewed simply as a code string. Therefore a string program which solves
some problem is considered as more rich of information as shorter is its code string. A mat-
ter involving a pragmatic instance of efficiency, minimizing time machine and then costs of
program running.

But it is known that not any problem is computable, since a string including an infinte
number of characters, in many cases, cannot be compressed into a shorter one. Moreover also
strings including a finite number of characters often cannot be compressed into a shorter one.

In the language of set theory a similar circumstance arises because only a class of sets
may be defined by a law (shorter string) according to which their elements are generated,
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thanks to the replacement axiom. All the remaining sets can be defined only listing their
elements one by one (incompressible string).

Within the frame of Gödel’s theorem we can see the same problem as a matter of decidable
propositions which correspond to a computable Gödel’s number and undecidable propositions
which are related to non-computable Gödel’s numbers. This is what one means when says
that not all numbers are computable, since it does not exist a formula (shorter string) enabling
us to evaluate all their digits avoiding to list them one by one.

As a consequence, attaining physical dynamical systems, and especially biological and
cognitive ones, we know that not all their activities are computable. So the irreducible
qualitative and properly ontological aspects of their behavior has acquired a great relevance
even on a scientific point of view beside their philosophical importance.

Many of those non computable aspects concern information and related algorithms. A
semantic approach seems now to be required beside the purely syntactic one developed in the
classical information theory. Because the algorithm, as here is intended, is no longer simply
identified with the string on which it is coded – sum (whole) of the characters (parts) of
which it is composed – rather being a definition, actualizing the dynamics of some resulting
new entity.

Rather such a definition is a logical law defining an entity and a sort of ontological
form/information actuating its structure (essence) and its dynamics (nature).

We emphasize that such a notion of algorithm, together with the previous philosophical
interpretation seems to reveal a first but non-trivial rigorously scientific attempt to approach
the definition/essence of the entity the structure/organization and the dynamics/nature of
which are generated by the algorithm itself. We remember, in fact, that according to the
Aristotelian-Thomisitic ontology the nature is just the essence as principle of acting.10

So an algorithmic information involves more of philosophical content than some mere
quantitative measure of information. Scientific investigation on information has become aware
of this semantic exceeding contribution and is just attempting to grasp it with more and
more suitable definitions. Information is recognized to be more than the length compression
of a string of code.11 In the frame of the mathematical physics of non-linear dynamical
systems, for instance, a relevant approach to form/information has been developed following
a methodology which is known as qualitative analysis of motion. Similar models are applied
even in a biological context, in order to model the evolution of species or the emergence of
self-organization during the transition from non-living matter to living organisms.

All these research exhibit some non-trivial philosophical relevance since they investigate,
as a matter of fact, the essence/nature of some entities by means of constructive definitions.
Most likely more refined mathematical instruments will be required in order to formalize

10“Acting depends on nature, which is the principle of acting (actio dependet a natura, quae est principium
actionis)”, Tomas Aquinas, In I Sent., Lib. 3, d. 18, q. 1, a. 1co; “the word nature, so considered, appears to
mean the essence of something, in order to its proper action (nomen autem naturae hoc modo sumptae videtur
significare essentiam rei, secundum quod habet ordinem vel ordinationem ad propriam operationem rei)”, De
Ente et Essentia, chap 1 (See[1]).

11Among the first mathematicians who approached in a rigorous way the problem of characterizing the
information, according to a careful comparison with the Aristotelian form, we have to mention René Thom
(1923-2002), of whom we cite his famous book[17].
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adequately information as a sort of algorithm and mathematics itself will widen as a true
theory of entities (formal ontology). So information could involve both computable aspects
and non-computable ones.

1.3 Main characters of information

It is now relevant to show which are the main characters of information which have been
caught by the different theories, as they have been developed in science. In particular we will
be able to recognize a progressive approaching between the scientific definitions of information
and some aspects of the Aristotelian-Thomistic notion of form.12

In particular we are able to identify some of its proper elements (formally defining charac-
ters) and some other elements required to its carriers, i.e., material supports ([13] pgs 13-17).

i) Code and syntax : at a first level of Shannon’s communication theory [18] we find, first of all,
the presence of a code, a symbolic alphabet allowing to tie (i.e., to write) information
onto some material support which is needed for it to be carried. Moreover, since any
alphabet requires to be governed by suitable rules, a syntax is to be added so that the
alphabet becomes useful to code information.

So we will have:

– a set of conventional symbols called the alphabet ;

– a set of conventional rules which must be enough to state what is allowed in organizing
the symbols, which we call the syntax.

That not withstanding information, in itself, is independent of the matter medium
across which it is traveling, which only allows to it to be carried. Any carrier can be
exchanged with another carrier of just the same information. And the carrier, as it
is, cannot produce any information by itself, neither as efficient cause, nor as formal
cause, nor as final cause.

ii) meaning : meaning is the essential attribute of information as it is coded into a language
in order to its communication (i.e., transfer and interpretation).

– The words, either they are written or spoken, may be used used to symbolically represent
entities of any kind: events and/or concepts, i.e., everything.

– Moreover (this is the relevance of symbols) the signified entities need not to be physically
present together with the words, since they take their place, representing them and
communicating something about them just as if they were actually present.

12In Aristotelian-Thomistic view by form one means an immaterial principle acting in such a way that an
entity is what it is and nothing else. On a logical viewpoint it identifies the so called metaphysical definition of
an entity; on a metaphysical viewpoint it identifies the structure and the dynamics of an entity so determining
its nature.
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– Experimentally it has always been observed, until now, that chemical and physical (i.e.,
purely material) processes, as such, are unable to perform any symbolic substitution.
We mean, here, material processes which are not driven by some external control system
informing the behavior of the process itself.

iii) Expected action: information appears as something which is sent by a sender in order
that a receiver executes a precise operation to achieve some goal.

– The receiver starts operating soon after reading and decoding the message. In some
situations the sequence of the operations may be even very long and difficult to be
executed.

– The receiver may be required to decide if the operation is to be executed or not, completely
or only partially. If the decision is “yes”, the operation will be executed as required by
the sender. In particular two kinds of receivers are to be distinguished, i.e.:

= an intelligent and free receiver, who is able to understand the meaning of the message;

= or a machine which is unable of understanding and freely choosing.

The former, being intelligent, can answer the sender’s request according to a freely
choice among several different strategies. The latter, being an automatism, is totally
driven by the control program. In both cases machines may be necessary to perform
the required operations.

iv) Intended purpose: before the message is sent the sender needs some internal mental
process motivating him to formulate and send the message as such.

– This process is generally highly complex and involves some need, motivation and will that
something is received and executed by somebody/something else.

– in particular, when the operation is so hard that it could not be executed by any receiver,
the sender must carefully evaluate if the chosen receiver is adequate to perform the
duty.

– If the whole process is successfully performed the sender’s intent will be achieved satisfac-
torily.

– So the sender’s intent appears to be essentially at the origin of the message.

– The receiver’s success in executing the sender’s intent is the result of the entire operation
of communication of information.

The previous four attributes seem to be required to characterize unambiguously the notion
of information. Therefore a possible formal definition of universal information (UI) must
include them all. Here is such a kind of definition: ([13] pg 16)

A symbolically encoded, abstractly represented message conveying the expected
action and the intended purpose.
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In order that a similar definition may become scientifically employable we need to formal-
ize it, in turn, into a suitable symbolic language, so that we are able to use it in computations
(as for computable matters), or in the frame of a qualitative analysis (as for non-computable
matters).

It is interesting to follow Stuart Kauffmann’s (b. 1939) remarks on a progressive deeper
approach to the notion and the theory of information.

I begin with Shannon’s famous information theory. Shannon chooses, on purpose,
to ignore any semantics, and concentrate on purely syntactic symbol strings, or
messages over some pre-chosen symbol alphabet [. . . ].

It is clear that Shannon’s invention requires that the ensemble of all possible
messages [. . . ] be stable head of time. Without this statement, the entropy of
the information source cannot be defined. Now let’s turn to evolution. We saw
above that we cannot pre-state the adjacent possibilities of the evolution of the
biosphere by Darwinian preadaptations. Thus, we cannot construct anything like
Shannon’s probability measure over the future evolution of the biosphere [. . . ]

The same concerns arise for Kolmogorov, who again requires a defined alpha-
bet and symbol strings of some length distribution in that alphabet. Again,
Kolmogorov uses only a syntactic approach. Life is deeply semantic with no pre-
stated alphabet, no source, no definable entropy of a source, but unpre-statable
causal consequences which alone or together may find a use in an evolving Kantian
whole of a cell or organism.

In summary, standard information theory, both purely syntactic and requiring a
pre-stated sample space, is largely useless with respect to evolution. On the other
hand, there is a persistent becoming of ever novel structures and processes that
constitute specific novel and integrated functionalities in the [. . . ] wholes that
co-create the evolving biosphere. [. . . ]

We need a new theory of embodied functional information in a cell, ecosystem or
the biosphere.[19]

1.4 Emergence and evolution of biological information

The relevant interest in the role of information in biology raises at least three main questions
in the context of scientific research.

– The first question is related to the emergence, or the origin of biological information.

According to an Aristotelian terminology we should talk of eduction of the form from
the potency of matter. So the problem for the search of an adequate efficient cause in
order to obtain such an eduction arises each time a substantial mutation transforming
some entity into another one happens in a stable way.
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In the contemporary scientific context this matter is often viewed as the problem of
information production or information increment within some system (physical, bi-
ological, etc.). There is a tendency to guess that information may be produced or
increased spontaneously, without an adequate causation, thanks to self-organization
capability of the system itself, arising by a sequence of random events.

– A second question, which is strictly tied to the previous one, is related to the evolution
of information, i.e., its mutation in time. In particular its spontaneous increment within
some system, especially a living system.

– The last question attains the problem of coding and copying biological information.
Clearly biological information is no longer considered as residing only in the DNA code.
Rather it appears as layered at several levels, even on the same biochemical, electro-
chemical or, generally, physical medium.

The assumption that life complexity is only a spontaneous result of non-linearity of chaotic
systems, has been shown to be incompatible with the numerical mathematical simulation
models implemented on a computer, starting from their governing equations ([20] and related
bibliography).

The explosion in the amount of biological information [. . . ] requires explanation
([22] pg 204).

The useful non-ambiguous beneficial mutations (i.e., non-damaging at any level) arising
from natural selection, result to be extremely rare. Chance seems not to be enough to generate
improvements without an adequate cause.[21]

On the contrary a process of loss of information (genetic entropy) is revealed, because
of deleterious mutations which result to be the most likely mutations. So a sort of defensive
barrier, conservative of complexity stability appears.[11]

As to biological information coding scientists has observed that the genetic units consist
in very precise instructions, coded in such a rich language that “any gene exhibits a level
of complexity resembling that of a book” ([22] pg 203). More languages (genetic codes) are
present in the same genoma, with multiple levels (even three-dimensional), coding biological
information, forming a network with several layers.

Computer simulation models did not succeed in attempting to explain neither the emer-
gence nor the increment of information, not withstanding both computer programs and the
human genoma exhibit very resembling repetitive code schemes.[23]

Information is responsible of organization and order emergence within the structure of a
system, so that information increasing implies order increasing. What numeric simulation –
based on statistical mechanics and non-equilibrium thermodynamics – show, on the contrary,
is that order is not spontaneously generated within the system, even if this latter is open
(being able of exchanging matter and energy with the external environment). Information
appears in a system, only in presence of a causal agent external to the system acting on it.
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If an increase in order is extremely improbable when a system is closed, it is
still extremely improbable when the system is open, unless something is entering
which makes it not extremely improbable ([24] pg 174).

The process of self-organization is activated thanks to the action of such an efficient/formal
cause, which resembles to what, according to the Aristotelian-Thomistic theory is called educ-
tion of a substantial form from the potency of matter.

Starting from our recent knowledge on the physics of non-linear systems and the thermo-
dynamics of non-equilibrium governing open dissipative systems, attempts are made in order
to model the process of information emergence form matter (emergence of an organized
structure in matter) by means of stable attractors.

The dynamics of those attractors, not withstanding it appears chaotic and dominated by
chance, is able to construct ordered structures. In fact the phase trajectories, solutions to
dynamics, even starting at random from different initial conditions belonging to a basin of
attraction (which may be even fractal), tend to fill precise regions of the phase space. So a
whole arises from a confluence of parts, which are only apparently separated, being on the
contrary non separable from the whole they are building, thanks to an information governing
the structure and the dynamics of the process.

Kauffmann’s intuition that a new kind of notion of information, which is not merely
statistical and syntactical, but involves also the semantic aspects seems to drive research
towards the right direction.

In particular the idea that some asymptotically stable attractor may be a good information
carrier:

– on one side ensures the presence of some information leading to structured order emerg-
ing within a system;

– on the other side allows that chance play a wide role in the dynamics of the system,
since the choice of initial conditions of the evolutive trajectories, within the basin of
attraction, is left to chance without preventing that they all reach asymptotically the
attractor itself.

So there does not exist any law in the arbitrary choice of the initial condition of the tra-
jectories with the basin of attraction – the behavior of which may result even unpredictable
if the attractor is chaotic – but some law exists within the dynamics of the system, involv-
ing some finality in its attractor solution. Such a finality (intended purpose) is typically a
character of information.

In principle several analogous levels of organization and finality may be obtained nesting
several attractors into a hierarchy, so that some level of attractors is attracted in turn by
a level of higher degree, until some first universal attractor is reached, which by definition
cannot be attracted further, in order to prevent the occurrence of a logical paradox like that
of the universal set.

i) A lower level of organization could be, e.g., provided by a set of stable attractors repre-
senting the molecules, the dynamics of which is governed by



ii) an immediately higher level of attractors organizing e.g., cells, the dynamics of which is
ruled

iii) by an higher level of attractors representing the organs of a living system;

iv) a fourth level of attractors shapes the structure and the functionalities of individual living
beings of different species;

v) a fifth level of attractors will organize the species of living beings, and so on.

In principle one could guess, according to such a model of nested attractors, the existence
of a chain starting at the level of the elementary particles and reaching the level of the
universe as a whole.

The chain is broken when some attractor flips from stability to instability, because of the
occurrence of some accidental cause modifying the values of the parameters involved in the
law of its level of dynamics. Then it happens that the second principle of thermodynamics,
locally overcomes with the result of increasing disorder : the ordered organization of the
system is partially damaged or fully destroyed.

The whole scheme of chained attractors reminds a sort of fractal structure, even if it is
not necessarily self similar in all its properties. We will be concerned with fractals in some
of the next chapters, at least in relation to the aspects involved in our investigation.

At present research is open on these topics and a widened mathematics appears to be
required resembling, at some levels, a sort of new version of ontology, suitably formalized.



Chapter 2

Two-dimensional structures from
algorithms
The roles of order and chance: the example of 2d-fractals

In the first chapter we presented some introductory considerations on information in com-
parison with the Aristotelian-Thomistic notion of form. A special attention has been de-
voted to the notion of algorithmic information viewed as a suitable candidate to approach
the logical/ontological notions of definition/essence regarding the structure of an entity and
respectively its nature on the side of its dynamics according to which it can operate and
especially the dynamics generating the entity itself.1

Two simple didactical examples of fractal generation were enough to show how a suitable
assigned (mathematical or physical) law can hide the capability of defining/constructing an
entire complex entity, which exhibits a precise ordered structure like a Julia set and a fractal
basin of attraction of a magnetic pendulum.

In the present chapter we will examine in more deepness how order and chance may enter
into the definition/structure and the dynamics/nature of some kinds of organized entities.

2.1 Ordered entity structures generated by ordered processes

2.1.1 Analytic geometry

As a first trivial class of ordered entity structures built by a very simple mathematical law
we can consider the entire environment of Cartesian analytic geometry.

1We remember that, roughly speaking, by Aristoelian-Thomistic notion of form we mean a non-material
principle organizing the structure of an entity, while by nature we mean the same principle as it is able to
determine the dynamics of the same entity.

17
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In fact algebraic equations involving two or respectively three variables (co-ordinates) as:

f(x, y) = 0, g(x, y, z) = 0, (2.1)

or algebraic inequalities as:

f(x, y) ≤ 0, g(x, y, z) ≤ 0, (2.2)

are enough to determine univocally a set of points in a Cartesian plane or, respectively, 3D
space,2 f, g being functions of the co-ordinates x, y or x, y, z of each point belonging to the
set.3 Equations identify paths on Cartesian plane or respectively surfaces4 in space, while
inequalities determine a region of points aside the paths (internal or external if the path and
the surface are closed), of the same dimension as the plane or respectively the space.

Fig.1 - a) Path set defined by the Cartesian equation x2 + y2 = R2, R = 0.9;
b) Filled set defined by the inequality x2 + y2 ≤ R2, R = 0.9.

Such structures are essentially simple, i.e., non-complex, since they do not exhibit self-
similarity properties, being built by a non-iterative procedure. In this sense we have qualified
them as a trivial class of sets. In effect they represent at most a sort of first level of idealized
approximation to real bodies.

The interest of even apparently simple structures arises, as it has been pointed out by
René Thom, if we consider their boundaries as singularities emerging within a continuous
body represented by the whole plane, or respectively the whole space5. In fact each boundary
manifold of Cartesian equation f(xi) = 0, i = 1, 2, · · · , n− 1 (where n is the space dimension-
ality), represents, for physical bodies, a front across which some physical quantity, as e.g.,

2More generally also in hyperspace of any dimension.
3Of course inequalities like f(x, y) ≥ 0, g(x, y, z) ≥ 0 can be reduced to the form (2.2) multiplying each

member by −1.
4More generally manifolds in hyperspace of any dimension.
5Or hyperspace if we consider higher dimensional abstract spaces.
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Fig.2 - a) Section of a surface set defined by the Cartesian equation x2 + y2 + z2 = R2, R = 1.0;
b) Filled set (body) defined by the inequality x2 + y2 + z2 ≤ R2, R = 1.0.

mass density, becomes discontinuous so that some body may be retailed and distinguished
by the other ones, determining its geometrical form.6.

2.1.2 Two-dimensional fractals in a plane

A more relevant class of structures is provided by fractal structures, which can be obtained,
generally, by an “adequate” number7 of iterations of some mathematical law. A typical
property of fractals is self-similarity (exact or at least statistical). In fact they exhibit
repeated geometrical shapes at any scale they may be examined. So it results impossible to
decompose them into simpler elementary parts characterized by a lower level of complexity,
i.e., to reduce their fractal dimension8 analyzing them at any deeper (in principle even
infinitesimal) scale level. A physical limit is imposed only by the computational power of our
machines.

Here we are not interested in examining in detail fractals and their properties, but we
are interested in emphasizing that generally many of them are generated by procedures that
apply a mathematical algorithm (law) following an ordered sequence of operations, so that an
ordered (self-similar) fractal structure of the resulting entity arises. In this sense we can say
that “order generates order”. It is not surprising to obtain order from order ; more surprise

6Here the word form means mainly shape and the related information law from which that shape is
obtained. The problem has been examined in mathematical detail, with an effort to establish comparison to
the Aristotelian notion of space and form by R.Thom, in [17].

7Where “adequate” means, in principle “infinite”, and in practice “sufficiently great” in order that self-
similarity appears according to the desired detail level.

8We remember that fractal dimension is a measure of the fraction of straight line filled by a set of points,
or the fraction of plane filled by a curve (increased by one), or the fraction of space filled by a shape, increased
by two, and so on. Generally the formula D = logN/ logK is employed to evaluate a-priori or to estimate
a-posteriori (with the box counting method) the fractal dimension of a fractal path. D represents the fractal
dimension, N the number of segments with which, at recursion step n + 1, one replaces the segment obtained
at the step n, being divided into K parts.
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will arise when we will observe “order arising from chance” thanks to a law hidden into the
apparent disorder.

Examples

Typically, the programs generating Mandelbrot set, Julia sets and Newton’s method fractals
perform a sequentially ordered scanning of a square region of the Cartesian plane applying
to the co-ordinates of each point a recursion law in order to determine if it belongs to the
fractal set9 or not, and plot to the computer display a pixel of a color corresponding to the
numerical result obtained.10

In particular Mandelbrot set, Julia sets nad Newton’s method sets are representations on
the complex plane of the domain of convergence of a complex series, while other kinds of
fractals may arise by sequential operations on real numbers.

The degree of complexity of those and similar fractals may depend:

i) on the combined effect of the level of non-linearity of the function (law) involved in the
recursion procedure;

ii) on the number of iterations of the procedure itself;

iii) and on the number of the control parameters included into the law.

An intensively studied recursion law has the general form:

zn+1 = f(zn) + c, (2.3)

where z = x+ iy, c = a+ ib are complex numbers and f(z) is an assigned complex function.
The search for the convergence domain of the series:

+∞∑
n=1

zn ≡ z1 + z2 + · · ·+ zn + · · · , (2.4)

leads to fractal sets.11 Gaston Julia (1893-1978) and Benoit Mandelbrot (1924-2010) studied
in detail the simplest non-trivial case when:

f(z) = z2. (2.5)

In particular when it is assumed that z0 = 0 and c swaps the entire complex plane, the
Mandelbrot set is generated, while, on the contrary, when c is fixed, during calculations, at
some chosen value and z0 swaps the complex plane, the Julia sets are obtained.

9The set being defined as the convergence domain of a suitable series.
10When colors are chosen according to suitable color maps the beauty of the picture may result of great

effect.
11With the exception of the trivial function f(z) = z.
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Fig.3 - a) Mandelbrot set; b) Julia set (c = −0.7454294)

The Matplolib module in Python 3 provides a very efficient set of instructions to build
2D fractals as wholes.

Python 3 codes to generate pictures in fig. 3

###########################################

# 2D Mandelbrot set with complex arrays

# (matplotlib module)

###########################################

import numpy as np # import numpy module

import matplotlib.pyplot as plt # import matplotlib module

n = 8 # set number of cycles

Cx = -.8 # set initial x parameter shift

Cy = 0.0 # set initial y parameter shift

L = 1.7 # set square area side

M = 2024 # set side number of pixels

x = np.linspace(Cx-L,Cx+L,M) # x variable array

y = np.linspace(Cy-L,Cy+L,M) # y variable array

X,Y = np.meshgrid(x,y,sparse=True) # square area grid

Z = np.zeros(M) # complex starting points area

C = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

Z1 = Z**2 + C

Z = Z1

W = np.e**(-abs(Z)) # smoothed sum moduls

plt.imshow(W,interpolation=’nearest’, cmap=plt.cm.nipy_spectral)

plt.axis("off")

plt.show() # plot image
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###################################################

# 2D Julia set with complex arrays (c=-0.7454294)

# (matplotlib module)

###################################################

import numpy as np # import numpy module

import matplotlib.pyplot as plt # import matplotlib module

n = 9 # set number of cycles

Cx = -0.7454294 # set c parameter real part value

Cy = 0 # set c parameter imaginary part value

C = Cx + 1j*Cy

L = 1.7 # set square area side

M = 2024 # set side number of pixels

x = np.linspace(-L,L,M) # x variable array

y = np.linspace(-L,L,M) # y variable array

X,Y = np.meshgrid(x,y,sparse=True) # square area grid

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

Z1 = Z**2 + C

Z = Z1

W = np.e**(-abs(Z)) # smoothed sum moduls

plt.imshow(W,interpolation=’nearest’, cmap=plt.cm.nipy_spectral)

plt.axis("off")

plt.show() # plot image

We may observe that while the Mandelbrot set shape is simply stretched and scaled if z0
is fixed at a value different from zero (see fig. 4), the Julia sets assume very different shapes
depending on the choice of the parameter c (see figs 5-6).

Fig.4 - a) Mandelbrot set (z0 = 1.0); b) Mandelbrot set (z0 = 1.3)
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Fig.5 - a) Julia set for c = −0.7454294 + i0.113089; b) Julia set for c = −0.561321− i0.641

Fig.6 - a) Julia set for c = −0.2009− 0.67037 b) Julia set for c = 0.11031− i0.67037
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Generalized Mandelbrot sets have been obtained starting from a different choice of the
function f(z), as it is shown in figs 7-10.

Fig.7 - f(z) = z3 + c Fig.8 - f(z) = z4 + c

Fig.9 - f(z) = cos2 z + c Fig.10 - f(z) = tan2 z + c
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Similarly generalized Julia sets can be obtained starting from a different choice of the
function f(z) (see figs 11-12).

Fig.11 - f(z) = z3 + c Fig.12 - f(z) = z4 + c

We conclude this section with two examples based on Newton’s method.
Newton’s method is used to check approximated zero solutions to polynomials of any

degree, being based on the recursion law:12

zk+1 = zk −
f(zk)

f ′(zk)
. (2.6)

Fig.13 - f(z) = z3 + 1 Fig.14 - f(z) = z4 + 1

12This law can be obtained by the first order Taylor expansion of f(z) in the neighborhood of z0, given by:
f(z) = f(z0) + f ′(z0)(z − z0). Requiring that f(zk+1) = 0 and setting z0 = zk it results, solving by zk that

zk+1 = zk − f(zk)
f ′(zk)

, provided that it is assumed that f ′(zk 6= 0.
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Python 3 codes to generate Figs 13 and 14

#################################################

# Newton’s method set (Z**3+1=0 or Z**4+1=0)

# with complex arrays (matplotlib module)

#################################################

import numpy as np # import numpy module

import matplotlib.pyplot as plt # import matplotlib module

n = 8 # alternative n = 12 # set number of cycles

Cx = 0.0 # set initial x parameter shift

Cy = 0.0 # set initial y parameter shift

L = 1.0 # set square area side

M = 2024 # set side number of pixels

x = np.linspace(-L-Cx,L-Cx,M) # x variable array

y = np.linspace(-L-Cy,L-Cy,M) # y variable array

X,Y = np.meshgrid(x,y,sparse=True) # square area grid

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

Z1 = Z - (Z**3 + 1)/(3*Z**2)

# alternative Z1 = Z - (Z**4 + 1)/(4*Z**3)

Z = Z1

W = np.e**(-.5*abs(Z)) # smoothed sum moduls

plt.imshow(W,interpolation=’nearest’, cmap=plt.cm.nipy_spectral)

plt.axis("off")

plt.show() # plot image

In the examples we have just presented the recursion law (information) – according to
a philosophical perspective – plays a role which appears to be similar to that of a form
or essence respect to the resulting entity (the fractal object), since it defines exactly and
univocally its structure. While the individual paper sheet on which the image is printed
or the individual screen on which it is displayed plays the role of matter determining each
singular actualization of the form. We emphasize that, in the previous examples, the action
of the form is revealed only as final result of its operation. So the fractal object is considered
as a whole, while the process of the emergence of its ordered structure by the action form is
not revealed.

In order to reveal how an algorithm operates in generating the whole, starting from
unrelated parts, we need a different programming strategy which allows to show the fractal
emergence point by point and not only as a final whole.

In 2D we have can achieve easily our goal thanks, e.g., to Graphics module in Python 3.
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Showing the ordered sequential process generating 2D fractals point by point

Therefore, beside showing the pictures of fractals as wholes, it is relevant13 for us to show also
the possibile dynamics capable to generate each image, examining the evolutionary process of
image generation at each stage, so revealing the role of form/information as operating nature.

An elementary process is provided by scanning a region of the complex (or xy) plane
sequentially (raw after raw, column after column), so that it appears clearly as order generates
order.

Steps of the generation process of Mandelbrot set, Julia set (c = 0.7454294) and Newton’s
method set (f(z) = z6 + 1) are shown in figs 15-17. Here are the related programming codes.

Python 3 codes to generate Figs 15, 16 and 17

##############################################################

# Sequential ordered steps of 2D Mandelbrot set generation

# (graphics module)

##############################################################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

Radius = 10 # set escape rate threshold

x0 = .5 # set initial x co-ordinate shift

y0 = 0.0 # set initial y co-ordinate shift

Side = 1.2 # set square area side

M = 300 # set side number of elementary squares

N = 1 # set color map scale factor

Num = 256*N # set number of cycles

sT=5 # set step jump

win = GraphWin("Mandelbrot set", int(5*M/3),int(5*M/3)) # set window title

win.setBackground("white") # set background color

def rectCol(p,q,w): # define elementary cell

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),

Point(int(p+sT/2),int(q+sT/2)))

Rect.draw(win).setFill(color_rgb(int(w),int(128-w/2),

int(128+w/2)))

for p in range(1,M,sT): # column scanning cycle

Incy = y0 - Side + 2*Side/M*p # define column scanning function

for q in range(1,M,sT): # raw scanning cycle

Incx = x0 - Side + 2*Side/M*q # define raw scanning function

x = 0.0 # set starting x co-ordinate

y = 0.0 # set starting y co-ordinate

w = 0 # set starting escape modulus value

for n in range(1,Num): # recursion cycle

xx = x*x - y*y - Incx

yy = 2*x*y - Incy

x = xx

y = yy

13In particular for future applications to biology, as it will be shown in chapters 8 and 9.
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Fig.15 - Rough scheme of ordered sequential generation of Mandelbrot set

VIEW ANIMATION (requires internet connection)

Fig.16 - Rough scheme of ordered sequential generation of a Julia set (c = 0.7454294)

VIEW ANIMATION (requires internet connection)

Fig.17 - Rough scheme of ordered sequential generation of a Newton’s method set (f(z) = z6 + 1)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/MandelbrotSQ.m4v
http://albertostrumia.it/sites/default/files/Animations/JuliaSQ.m4v
http://albertostrumia.it/sites/default/files/Animations/NewtonSQ.m4v
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if x*x + y*y > Radius: # escape rate condition

w = n/N # escape modulus normalization

rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell

break # interrupt cycle

win.getMouse() # wait for mouse click

win.close() # close window

##########################################################

# Sequential ordered steps of a 2D Julia set generation

# (c=0.7454294)

# (graphics module)

##########################################################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

Radius = 10 # set escape rate threshold

Cx = 0.7454294 # set c parameter real part value

Cy = 0.0 # set c parameter imaginary part value

Side = 1.7 # set square area side

M = 300 # set side number of elementary squares

N = 1 # set color map scale factor

Num = 256*N # set number of cycles

sT=3 # set step jump

win = GraphWin("Julia set", 5*M/3,5*M/3) # set window title

win.setBackground("white") # set background color

def rectCol(p,q,w): # define elementary cell

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),

Point(int(p+sT/2),int(q+sT/2)))

Rect.draw(win).setFill(color_rgb(int(w),int(128-w/2),

int(128+w/2)))

for p in range(1,M,sT): # column scanning cycle

Incy = - Side + 2*Side/M*p # define column scanning function

for q in range(1,M,sT): # raw scanning cycle

Incx = - Side + 2*Side/M*q # define raw scanning function

x = Incx # set starting increment of x co-ordinate

y = Incy # set starting increment of y co-ordinate

w = 0 # set starting escape modulus value

for n in range(1,Num): # recursion cycle

xx = x*x - y*y - Cx

yy = 2*x*y - Cy

x = xx

y = yy

if x*x + y*y > Radius: # escape rate condition

w = n/N # escape modulus normalization

rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell

break # interrupt cycle

win.getMouse() # wait for mouse click

win.close() # close window
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##############################################################

# Sequential ordered steps of a 2D Newton’s method set

# generation - Polynomial f(z) = z**6+1

# (graphics module)

##############################################################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

import numpy as np # import numpy module

Radius = .5 # set escape rate threshold

Cx = 0.0 # set initial x parameter shift

Cy = 0.0 # set initial y parameter shift

Side = .8 # set square area side

M = 300 # set side number of elementary squares

N = 1 # set color map scale factor

Num = 256*N # set number of cycles

sT=2 # set step jump

win = GraphWin("Newton’s method set", 5*M/3,5*M/3) # set window title

win.setBackground(color_rgb(230,220,10)) # set background color

def rectCol(p,q,w): # define elementary cell

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),

Point(int(p+sT/2),int(q+sT/2)))

Rect.draw(win).setOutline(color_rgb(np.int(255*np.sin(w)**2),

np.int(255*np.cos(w)**2),np.int(255*np.cos(w/2)**2)))

# Alternative values Cx 0.1747, 0.1747 Cy -.072,-1.072

# Side 0.0015, 0.00015 Num 1024

for p in range(1,M,sT): # column scanning cycle

Incy = - Side + 2*Side/M*p # define column scanning function

for q in range(1,M,sT): # raw scanning cycle

Incx = - Side + 2*Side/M*q # define raw scanning function

x = Incx # set starting increment of x co-ordinate

y = Incy # set starting increment of y co-ordinate

w = 0 # set starting escape modulus value

for n in range(1,Num): # recursion cycle

xx = 5*x/6.0 - x*(x*x*x*x - 10*x*x*y*y +5*y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0

yy = 5*y/6.0 + y*(5*x*x*x*x - 10*x*x*y*y + y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0

x = xx

y = yy

if (x-Cx)*(x-Cx) + (y-Cy)*(y-Cy) < Radius: # escape rate condition

w = n/N # escape modulus normalization

rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell

break # interrupt cycle

win.getMouse() # wait for mouse click

win.close() # close window

2.2 Ordered entity structures generated by random processes

Now it is relevant, especially regarding biological applications, to observe that the ordered
sequential process, we have just tested in the previous §2.1 does not provide the only possibile
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dynamics capable to generate ordered structures. In alternative to assign the initial conditions
– starting from which one applies the mathematical algorithm (information) generating the
corresponding point of the plot (pixel or cell on the screen) – according to a sequential order,
we may always choose them at random.

With that choice each point or cell will appear on the computer display here and there,
randomly. But at the end of the process, the same ordered structure of the structure will
result. In other words, chance seems to generate order, but only thanks to the information
hidden within the mathematical law encoded in the algorithm. The ordinating principle is
information and not chance as such.

2.2.1 Showing the random process generating 2D fractals

Mandelbrot, Julia and Newton’s method sets

A typical example is offered by 2D fractals.

We present, for a comparison with the sequential process, pictures and Python 3 related
codes generating Mandelbrot, Julia and Newton’s method fractals arising starting from ran-
dom initial conditions. Of course the smaller are the elementary squares building the plot
the more refined image will result.14

We show in figs 18, 19 and 20 the same Mandelbrot, Julia and Newton’s method sets
considered before, now generated by random assignment of initial conditions. One may
recognize how order, initially lacking appears slowly step by step,

Fig.18 - Rough scheme of random generation of Mandelbrot set

VIEW ANIMATION (requires internet connection)

14Naturally a more refined image requires a longer computing time.

http://albertostrumia.it/sites/default/files/Animations/MandelbrotRD.m4v
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Fig.19 - Rough scheme of random generation of a Julia set (c = 0.7454294)

VIEW ANIMATION (requires internet connection)

Fig.20 - Rough scheme of random generation of a Newton’s method set (f(z) = z6 + 1)

VIEW ANIMATION (requires internet connection)

Python 3 codes to generate Figs 18, 19 and 20

#########################################

# 2D Mandelbrot set random generation

# (graphics module)

#########################################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

import random # import random module

Radius = 10 # set escape rate threshold

Cx = .5 # set initial x co-ordinate shift

Cy = 0.0 # set initial y co-ordinate shift

Side = 1.3 # set square area side

M = 300 # set side number of elementary squares

N = 1 # set color map scale factor

http://albertostrumia.it/sites/default/files/Animations/JuliaRD.m4v
http://albertostrumia.it/sites/default/files/Animations/NewtonRD.m4v
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Num = 256*N # set number of cycles

sT=5 # set step jump

win = GraphWin("Mandelbrot set", int(5*M/3),int(5*M/3)) # set window title

def rectCol(p,q,w): # define elementary cell

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),

Point(int(p+sT/2),int(q+sT/2)))

Rect.draw(win).setFill(color_rgb(int(10*w%255),

int((128-10*w)%255),int((128+10*w)%255)))

# Alternative values Cx 0.1747, 0.1747 Cy -.072,-1.072

# Side 0.0015, 0.00015 Num 1024

i = 1 # set non-zero index value

while i > 0: # set random co-ordinates choice cycles

p = random.randrange(1,M)

q = random.randrange(1,M)

Incx = Cx - Side + 2*Side/M*q

Incy = Cy - Side + 2*Side/M*p

x = 0.0 # set starting x co-ordinate

y = 0.0 # set starting y co-ordinate

w = 0 # set starting escape modulus value

for n in range(1,Num):

xx = x*x - y*y - Incx

yy = 2*x*y - Incy

x = xx

y = yy

if x*x + y*y > Radius: # escape rate condition

w = n/N # escape modulus normalization

rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell

break # interrupt cycle

##################################

# 2D Julia set random generation

# (graphics module)

##################################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

import random # import random module

Radius = 10 # set escape rate threshold

Cx = 0.7454294 # set c parameter real part value

Cy = 0.0 # set c parameter imaginary part value

Side = 1.7 # set square area side

M = 300 # set side number of elementary squares

N = 1 # set color map scale factor

Num = 256*N # set number of cycles

sT=2 # set step jump

win = GraphWin("Julia set", 5*M/3,5*M/3) # set window title

def rectCol(p,q,w): # define elementary cell

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),

Point(int(p+sT/2),int(q+sT/2)))

Rect.draw(win).setOutline(color_rgb(int(10*w%255),
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int((128-10*w)%255),int((128+10*w)%255)))

# Alternative values Cx 0.1747, 0.1747 Cy -.072,-1.072

# Side 0.0015, 0.00015 Num 1024

i = 1 # set non-zero index value

while i > 0: # set random co-ordinates choice cycles

p = random.randrange(1,M)

q = random.randrange(1,M)

Incx = - Side + 2*Side/M*q # set x increment

Incy = - Side + 2*Side/M*p # set y increment

x = Incx

y = Incy

w = 0 # set starting escape modulus value

for n in range(1,Num):

xx = x*x - y*y - Cx

yy = 2*x*y - Cy

x = xx

y = yy

if x*x + y*y > Radius: # escape rate condition

w = n/N # escape modulus normalization

rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell

break # interrupt cycle

##############################################

# 2D Newton’s method set random generation

# Polynomial f(z)=z**6+1

# (graphics module)

##############################################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

import numpy as np # import numpy module

import random # import random module

Radius = .5 # set escape rate threshold

Cx = 0.0 # set initial x parameter shift

Cy = 0.0 # set initial y parameter shift

Side = .8 # set square area side

M = 300 # set side number of elementary squares

N = 1 # set color map scale factor

Num = 256*N # set number of cycles

sT=2 # set step jump

win = GraphWin("Newton’s method set", 5*M/3,5*M/3) # set window title

win.setBackground(color_rgb(230,220,10)) # set background color

def rectCol(p,q,w): # define elementary cell

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),

Point(int(p+sT/2),int(q+sT/2)))

Rect.draw(win).setOutline(color_rgb(np.int(255*np.sin(w)**2),

np.int(255*np.cos(w)**2),np.int(255*np.cos(w/2)**2)))

# Alternative values Cx 0.1747, 0.1747 Cy -.072,-1.072

# Side 0.0015, 0.00015 Num 1024

i = 1 # set non-zero index value
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while i > 0: # set random co-ordinates choice cycles

p = random.randrange(1,M)

q = random.randrange(1,M)

Incx = - Side + 2*Side/M*q # set starting increment of x co-ordinate

Incy = - Side + 2*Side/M*p # set starting increment of y co-ordinate

x = Incx

y = Incy

w = 0 # set starting escape modulus value

for n in range(1,Num):

xx = 5*x/6.0 - x*(x*x*x*x - 10*x*x*y*y +5*y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0

yy = 5*y/6.0 + y*(5*x*x*x*x - 10*x*x*y*y + y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0

x = xx

y = yy

if (x-Cx)*(x-Cx) + (y-Cy)*(y-Cy) < Radius: # escape rate condition

w = n/N # escape modulus normalization

rectCol(int(M/3+q),int(M/3+p),int(w)) # plot elementary cell

break # interrupt cycle

The iterating function system (IFS) generating natural ordered fractal structures

Another example of ordered structures generated by a random dynamics governed by a math-
ematical algorithmic information is offered by the fractals obtained applying the Iterated
Function System (IFS ). This method is employed, generally, to model shapes existing in
nature, like coast or mountain profiles, leaves, ferns, trees, clouds and so on. The recursion
law of the algorithm is characterized by affine transformations of type:

xp n+1 = ap xn + bp yn + cp, yp n+1 = dp xn + ep yn + fp, (2.7)

where ap, bp, cp, dp, ep, fp are constant coefficients the value of which is chosen in a suitable
way in order to obtain the desired shape. This method introduces chance at the level of
the random probability p according to which each coefficient value may occur. So, if e.g., a
randomly chosen p′ is greater than p1 and less than p2, the coefficients will assume the values
ap1 , bp1 , cp1 , dp1 , ep1 , fp1 . While if a different random value p′′ of the probability occurs, say, be-
tween p2 and p3 the coefficients will be assigned to the different values ap2 , bp2 , cp2 , dp2 , ep2 , fp2 .
Then the law (2.7) is changed according to some chance criterion. Typical examples are the
fractal fern (fig. 21), the fractal tree (fig. 22), or the Sierpinski triangle (fig. 23).

Fig.21 - Fern generation steps (IFS method)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/FernIFS.m4v
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Fig.22 - Tree generation steps (IFS method)

VIEW ANIMATION (requires internet connection)

Fig.23 - Sierpinski triangle generation steps (IFS method)

VIEW ANIMATION (requires internet connection)

The related computer codes of programs to generate such images are given below.

Python 3 codes to generate figs 21, 22 and 23

###############################

# IFS fern random generation

# (graphics module)

###############################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

import numpy as np # import numpy module

import random # import random module

Mxy=[[0.0,0.0,0.0,0.6,0.0,0.0,0.01], # assign probability matrix

[0.85,0.04,-0.04,0.85,0.0,1.6,0.85],

[0.2,-0.26,0.23,0.22,0.0,1.6,0.07],

[-0.15,0.28,0.26,0.24,0.0,0.44,0.07]]

a = [0,.85, .2, -.15] # assign affine transformations coefficients

http://albertostrumia.it/sites/default/files/Animations/TreeIFS.m4v
http://albertostrumia.it/sites/default/files/Animations/TriangleIFS.m4v
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b = [0, .04, -.26, .28]

c = [0, -.004, .23, .26]

d = [.16, .85, .22, .24]

e = [0, 0, 0, 0]

f = [0, 1.6, 1.6, .44]

M = 300 # set side number of elementary squares

Num = 30000 # set number of cycles

sT = 1 # set step jump

win = GraphWin("Fern", 2*M,2*M) # set window title

win.setBackground(’black’) # set background color

def rectCol(p,q,w): # define elementary cell

Rect = Rectangle(Point(np.int(p-sT/2),np.int(q-sT/2)),

Point(np.int(p+sT/2),np.int(q+sT/2)))

Rect.draw(win).setOutline(color_rgb(w,255-np.int(.5*w),

np.int(.5*w)))

x = 1 # set x initial value

y = 1 # set x initial value

for n in range(0,Num): # set random probabilities choice cycles

P = random.random()

if P <= Mxy[0][6]:

k = 0

elif P <= Mxy[0][6] + Mxy[1][6]:

k = 1

elif P <= Mxy[0][6] + Mxy[1][6] + Mxy[2][6]:

k = 2

else:

k = 3

xx = a[k]*x+b[k]*y+e[k] # affine transformation recursion cycle

yy = c[k]*x+d[k]*y+f[k]

x = xx

y = yy

rectCol(np.int(M+50*x),np.int(2*M-30-50*y),np.int(np.abs(20*y))) # plot elementary cell

win.getMouse() # wait for mouse click

win.close() # close window

###############################

# IFS tree random generation

# (graphics module)

###############################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

import numpy as np # import numpy module

import random # import random module

Mxy=[[0.195 , -0.488, 0.344 , 0.443 , 0.4431, 0.2452], # assign probability matrix

[0.462 , 0.414 , -0.252, 0.361 , 0.2511, 0.5692],

[-0.058, -0.07 , 0.453 , -0.111, 0.5976, 0.0969],

[-0.035, 0.07 , -0.469, -0.022, 0.4884, 0.5069],

[-0.637, 0 , 0 , 0.501 , 0.8662, 0.2513]]
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# Mxy=[[0.0,0.0,0.0,0.6,0.0,0.0,0.01],

# [0.85,0.04,-0.04,0.85,0.0,1.6,0.85],

# [0.2,-0.26,0.23,0.22,0.0,1.6,0.07],

# [-0.15,0.28,0.26,0.24,0.0,0.44,0.07]]

a = [0,.42, .42, .1] # assign affine transformations coefficients

b = [0, -.42, .42, 0]

c = [0, .42, -.42, 0]

d = [.5, .42, .42, .1]

e = [0, 0, 0, 0]

f = [0, .2, .2, .5]

M = 300 # set side number of elementary squares

Num = 3000 # set number of cycles

sT = 2 # set step jump

win = GraphWin("Tree", 2*M,2*M) # set window title

win.setBackground(’black’) # set background color

def rectCol(p,q,w): # define elementary cell

Rect = Rectangle(Point(np.int(p-sT/2),np.int(q-sT/2)),

Point(np.int(p+sT/2), np.int(q+sT/2)))

Rect.draw(win).setOutline(color_rgb(w,255-w,np.int(.5*w)))

x = 1 # set x initial value

y = 1 # set x initial value

for n in range(0,Num): # set random probabilities choice cycles

k = random.randrange(0,4)

xx = a[k]*x+b[k]*y+e[k] # affine transformation recursion cycle

yy = c[k]*x+d[k]*y+f[k]

x = xx

y = yy

# plot elementary cell

rectCol(np.int(M+600*x),np.int(2*M-100-600*y), np.int(n*128/Num+np.abs(100*(.8-y))))

win.getMouse() # wait for mouse click

win.close() # close window

##############################################

# IFS Sierpinski triangle random generation

# (graphics module)

##############################################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

import numpy as np # import numpy module

import random # import random module

a = [0.50, 0.50, 0.50] # assign affine transformations coefficients

b = [0.00, 0.00, 0.00]

c = [0.00, 0.00, 0.00]

d = [0.50, 0.50, 0.50]

e = [0.00, 0.00, 0.50]
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f = [0.00, 0.50, 0.50]

M = 300 # set side number of elementary squares

Num = 10000 # set number of cycles

sT = 1 # set step jump

win = GraphWin("Sierpinski triangle", 2*M,2*M) # set window title

win.setBackground(’black’) # set background color

def rectCol(p,q,w): # define elementary cell

Rect = Rectangle(Point(np.int(p-sT/2),

np.int(q-sT/2)),Point(np.int(p+sT/2),np.int(q+sT/2)))

Rect.draw(win).setOutline(color_rgb(w,w,0))

x = 1 # set x initial value

y = 1 # set x initial value

for n in range(0,Num): # set random probabilities choice cycles

k = random.randrange(0,3)

xx = a[k]*x+b[k]*y+e[k] # affine transformation recursion cycle

yy = c[k]*x+d[k]*y+f[k]

x = xx

y = yy

rectCol(np.int(np.int(.2*M)+500*x),np.int(2*M-50-500*y),255) # plot elementary cell

win.getMouse() # wait for mouse click

win.close() # close window

2.2.2 Remark

The generation of an ordered structure starting from random initial conditions seems espe-
cially interesting in order to model biological entities (cells, organs, etc.). In fact a living
ordered structure seems to appear, quite magically, by random process and arise by chance.
Actually chance involves only the initial conditions and perhaps some of the subsequent bi-
furcations of the generation process dynamics, while some information hidden into, e.g., the
DNA and other supports, governs the entire generation dynamics. Such information may
probably be hidden into some very complex string, or a nested structure of strings which
partly is able to write its code step by step, as an unfolding strip.

2.3 Non-computable 2D structures

Only for some special structures15 one is able to find a mathematical formula (law) which
allows to define a sort of essence of some entity (body or system), which may be coded into a
string shorter than the mere list of the co-ordinates of each point of the body or system itself.
We have seen, in the previous sections, the examples of 2D fractals as significant structures.

15Some of those structures are well known and have been deeply studied.
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Very many situations are known such that a compact formula cannot be found

– either because of some technical difficulties

– or for principle reasons.

In the former case one may always hope that in future a skillful and lucky researcher will be
able to grasp such hidden law. In the latter case this lucky circumstance will be impossible,
since the Gödel’s number representing this formula is non-computable and the associated
proof of the law results undecidable within the axiomatic system. According to computer
science language one says that the string of the list of all the co-ordinates of the system
points results to be incompressible and no regular order appears examining the sequence of
the digits of the string, or the map of the points representing them geometrically. In some
situation the compression of the string may be made locally, thanks to some technical trick,16

but it does not exist a global unique formula (shorter string) compacting the whole structure
of the system, defining it as a sort of essence.

2.3.1 Sequential process generating a map of prime numbers

An interesting example of non-compressible string seems to be offered (at least until now) by
the sequence of the prime numbers.17

In fact, at least at present, we do not know any law to generate a number formed by the
sequence of the first n prime numbers, shorter than the full list of those number themselves;
like e.g., the number built by the sequence of the first 5 numbers greater than 2. The first
5 prime numbers greater than 2 are 3, 5, 7, 11, 13 and the number resulting is 3571113. In
similar situations an ordered dynamics as the sequential scanning of a region of the Cartesian
plane does not seem to produce any order. In the following figures we have plotted a portion
of the Cartesian plane in such a way that

– red pixels are associated to points the absolute values of the co-ordinates of which are
both prime numbers;

– green pixels are related to points of prime abscissa and non-prime ordinate;

– blue pixels are related to points of non-prime abscissa and prime ordinate;

– white pixels are related to points the co-ordinates of which are both non-prime numbers.

In particular, in fig. 24 the dynamics generated the plot is sequentially ordered, while in
fig. 25 the dynamics generating the plot is random. In both cases the co-ordinates of each
point are to be evaluated individually since there is no recursion formula allowing to generate
the subsequent prime number starting from a known one. We point out that notwithstanding

16Generally the compression methods of image or text files are based on such local expedients which allow
to shorten, e.g. a sequence of identical digits.

17We remember that a natural number n is said to be prime if it allows as exact divisors only the unit (1)
and itself (n).
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that the figure is plotted according to some symmetry criterion, since for each pair of prime
numbers (x, y) we plot four symmetric points of co-ordinates (x, y), (−x, y), (x,−y), (−x,−y),
the visual perception of such symmetries is gradually lost being overridden by the randomness
of the prime number sequence.

Fig.24 - Prime numbers sequential generation steps

VIEW ANIMATION (requires internet connection)

Python 3 code to generate images in fig. 24

###########################

# Prime numbers > 2

# sequential generation

# (graphics module)

###########################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

import numpy as np # import numpy module

M = 253 # set side number of elementary square (max number to be checked)

sT=1 # set step jump

P = np.zeros(M) # x co-ordinate array

Q = np.zeros(M) # y co-ordinate array

r = np.zeros([M,M]) # zero red color matrix

g = np.zeros([M,M]) # zero green color matrix

b = np.zeros([M,M]) # zero blue color matrix

win = GraphWin("Prime set (sequential)", int(10*M/3),int(10*M/3)) # set window title

win.setBackground("black") # set background color

def rectCol(p,q,R,G,B): # define elementary cell

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),Point(int(p+sT/2),

int(q+sT/2)))

Rect.draw(win).setOutline(color_rgb(R,G,B))

for p in range(3,M,2): # x sequential cycle

http://albertostrumia.it/sites/default/files/Animations/PrimeSQ.m4v
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for q in range(3,M,2): # y sequential cycle

j = 3 # set initial prime number

Wp = 1 # set default x control index

Wq = 1 # set default y control index

while j < p and j < q: # prime number checking cycle

if p%j != 0:

WWp = 1

Wp = Wp*WWp # ensures that no quotient is exact

else:

WWp = 0

Wp = Wp*WWp # ensures that no quotient is exact

if q%j != 0:

WWq = 1

Wq = Wq*WWq # ensures that no quotient is exact

else:

WWq = 0

Wq = Wq*WWq # ensures that no quotient is exact

j = j + 2

if (Wp == 1 and Wq == 1): # red color select conditions

P[p] = p

Q[q] = q

r[p,q] = 255

g[p,q] = 0

b[p,q] = 0

elif (Wp == 1 and Wq == 0): # green color select conditions

P[p] = p

Q[q] = q

r[p,q] = 0

g[p,q] = 255

b[p,q] = 0

elif (Wp == 0 and Wq == 1): # blue color select conditions

P[p] = p

Q[q]

r[p,q] = 0

g[p,q] = 0

b[p,q] = 255

elif (Wp == 0 and Wq == 0): # white color select conditions

P[p] = p

Q[q] = q

r[p,q] = 255

g[p,q] = 255

b[p,q] = 255

for q in range(3,M,2): # sequential plot cycles

for p in range (3,M,2):

rectCol(int(5*M/3-P[p]),int(5*M/3+Q[q]),

np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))

rectCol(int(5*M/3+P[p]),int(5*M/

3+Q[q]),np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))

rectCol(int(5*M/3+P[p]),int(5*M/3-Q[q]),

np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))

rectCol(int(5*M/3-P[p]),int(5*M/3-Q[q]),

np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))

win.getMouse() # wait for mouse click

win.close() # close window
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2.3.2 Random process generating a map of prime numbers

Here are the images and code related to ordered pairs of prime number generation according
to a random choice of initial conditions. Neither sequentially ordered nor random dynamics
seems to generate order.

Fig.25 - Prime numbers random generation steps

VIEW ANIMATION (requires internet connection)

Python 3 code to generate images in fig. 25

#######################

# Prime numbers > 2

# random generation

# (graphics module)

#######################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import* # import graphics module

import numpy as np # import numpy module

import random as rd # import random module

M = 253 # set side number of elementary square (max number to be checked)

sT=1 # set step jump

P = np.zeros(M) # x co-ordinate array

Q = np.zeros(M) # y co-ordinate array

r = np.zeros([M,M]) # zero red color matrix

g = np.zeros([M,M]) # zero green color matrix

b = np.zeros([M,M]) # zero blue color matrix

win = GraphWin("Prime set (random)", int(10*M/3),int(10*M/3)) # set window title

win.setBackground("black") # set background color

def rectCol(p,q,R,G,B): # define elementary cell

http://albertostrumia.it/sites/default/files/Animations/PrimeRD.m4v
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Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),Point(int(p+sT/2),

int(q+sT/2)))

Rect.draw(win).setOutline(color_rgb(R,G,B))

for p in range(3,M,2): # x sequential cycle

for q in range(3,M,2): # y sequential cycle

j = 3 # set initial prime number

Wp = 1 # set default x control index

Wq = 1 # set default y control index

while j < p and j < q: # prime number checking cycle

if p%j != 0:

WWp = 1

Wp = Wp*WWp # ensures that no quotient is exact

else:

WWp = 0

Wp = Wp*WWp # ensures that no quotient is exact

if q%j != 0:

WWq = 1

Wq = Wq*WWq # ensures that no quotient is exact

else:

WWq = 0

Wq = Wq*WWq # ensures that no quotient is exact

j = j + 2

if (Wp == 1 and Wq == 1): # red color select conditions

P[p] = p

Q[q] = q

r[p,q] = 255

g[p,q] = 0

b[p,q] = 0

elif (Wp == 1 and Wq == 0): # green color select conditions

P[p] = p

Q[q] = q

r[p,q] = 0

g[p,q] = 255

b[p,q] = 0

elif (Wp == 0 and Wq == 1): # blue color select conditions

P[p] = p

Q[q]

r[p,q] = 0

g[p,q] = 0

b[p,q] = 255

elif (Wp == 0 and Wq == 0): # white color select conditions

P[p] = p

Q[q] = q

r[p,q] = 255

g[p,q] = 255

b[p,q] = 255

i = 1 # set non-zero control paramter value

while i > 0: # random point selection cycles

p = rd.randrange(1,M,2)

q = rd.randrange(1,M,2)

# plot cell

rectCol(int(5*M/3-P[p]),int(5*M/3+Q[q]),

np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))

rectCol(int(5*M/3+P[p]),int(5*M/

3+Q[q]),np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))

rectCol(int(5*M/3+P[p]),int(5*M/3-Q[q]),



np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))

rectCol(int(5*M/3-P[p]),int(5*M/3-Q[q]),

np.int(r[p,q]),np.int(g[p,q]),np.int(b[p,q]))
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Chapter 3

Three-dimensional structures from
algorithms
The roles of order and chance and the rendering problem

In order to attempt to model biological structures like, e.g., organs, and their generating
dynamics, we need, at present, to make a further step, i.e., the passage from 2D to 3D
systems. As we will see one of the main technical problems one encounters, just at the first
level of modeling the geometrical shape of 3D structures, is related to the matter of rendering
their boundary surface in a reasonably realistic and satisfactory way.

a) We will start examining some examples of complex 3D fractals according to different
methods of surface rendering;1

b) Later we will propose a first rough model of the external surface of a human heart
generated by parametric equations in 3D space.

Sequential and random procedures will be examined in both cases.

3.1 Python 3 rendering of surfaces

Python 3 Mathplotlib provides a nice rendering of geometric shapes (boundary of 3D struc-
tures) when either the Cartesian equation or a set of parametric equations of the surface to
be rendered is known.

In the next subsection §3.1.1 we start with a simple geometrical example of a surface
defined by a Cartesian equation, while in §3.1.2 we offer an example of a surface defined by
its parametric equations.

1Python 3 and POV-Ray programming languages will be employed.

47
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3.1.1 Cartesian equation surface rendering

Here is the example of a Python 3 matplotlib plot of the surface of Cartesian equation:

z = e−.0.5(x
2+y2) cos

√
x2 + y2. (3.1)

Fig.1 - Python 3 matplotlib rendering of a surface of Cartesian equation z = e−.0.5(x2+y2) cos
√

x2 + y2

And the related program code is given below.

Python 3 code to generate fig. 1

#################################

# Whole 3D surface generation

# by Cartesian equation

# (matplotlib module)

#################################

from mpl_toolkits.mplot3d import Axes3D # import matplotlib module

import matplotlib.pyplot as plt # import matplotlib pylot module

from matplotlib import cm # import matplotlib colormap module

import numpy as np # import numpy module

plt.style.use(’dark_background’) # set black background color

R = 4.0 # set radius value

X = np.arange(-2*np.pi, 2*np.pi, 0.1) # set x co-ordinate array values

Y = np.arange(-2*np.pi, 2*np.pi, 0.1) # set y co-ordinate array values

X, Y = np.meshgrid(X, Y) # set xy grid

Z = np.e**(-.05*(X**2+Y**2))*np.cos(np.sqrt(X**2 + Y**2)) # set z function of x,y

fig = plt.figure() # define 3D plot and axes

ax = fig.gca(projection=’3d’)

ax.plot_surface(X, Y, Z, cmap=’hot’, linewidth=0) # plot surface as a whole

ax.set_zlim(-.3, 1.0) # set z axis limits
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ax.axis("off") # do not plot co-ordinate axes

plt.show() # show surface a a whole

3.1.2 The need of parametric equations surface rendering

Even if rendering is quite satisfactory some problems arise, for our purposes, employing
Cartesian equation rendering with matplotlib.

a) A first problem arises since surface Cartesian equations may plot only one-value func-
tions and are not properly apt to render closed shapes like cells, organs and biological
structures.2 So one is led to prefer parametric equations representation to model such
systems, so overcoming the problem.

Fig.2 - Python 3 matplotlib rendering of a sphere and a torus by parametric equations

Python 3 code to generate fig. 2

####################################

# Whole sphere generation

# by paramteric equations

# (matplotlib module)

####################################

from mpl_toolkits.mplot3d import Axes3D # import matplotlib module

import matplotlib.pyplot as plt # import matplotlib module

import numpy as np # import numpy module

angle = np.linspace(0, 2 * np.pi, 32) # define cylindrical co-ordinates array

2In principle one could join more surfaces generated by more one-value functions. But further difficulties
may arise when tangent plane to surfaces become vertical (infinite derivatives). So this approach to surface
rendering seems to be not raccomanded for our purposes.
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theta, phi = np.meshgrid(angle, angle) # set theta, phi grid

R = 1.0 # set radius value

X = R * np.cos(phi) * np.cos(theta) # evaluate x co-ordinate array values

Y = R * np.cos(phi) * np.sin(theta) # evaluate y co-ordinate array values

Z = R * np.sin(phi) # evaluate z co-ordinate array values

plt.style.use(’dark_background’) # set black background color

fig = plt.figure() # define 3D plot and axes

ax = fig.gca(projection = ’3d’)

ax.set_xlim3d(-1, 1) # set x axis limits

ax.set_ylim3d(-1, 1) # set y axis limits

ax.set_zlim3d(-1, 1) # set z axis limits

ax.plot_surface(X, Y, Z, cmap = "copper", rstride = 1, cstride = 1) # plot surface as a whole

ax.axis(’off’) # do not plot co-ordinate axes

plt.show() # show surface a a whole

#############################

# Whole torus generation

# by paramteric equations

# (matplotlib module)

#############################

from mpl_toolkits.mplot3d import Axes3D # import matplotlib module

import matplotlib.pyplot as plt # import matplotlib module

import numpy as np # import numpy module

angle = np.linspace(0, 2 * np.pi, 32) # define cylindrical co-ordinates array

theta, phi = np.meshgrid(angle, angle) # set theta, phi grid

r, R = .25, 1.

X = (R + r * np.cos(phi)) * np.cos(theta) # evaluate x co-ordinate array values

Y = (R + r * np.cos(phi)) * np.sin(theta) # evaluate y co-ordinate array values

Z = r * np.sin(phi)

plt.style.use(’dark_background’) # set black background color

fig = plt.figure() # define 3D plot and axes

ax = fig.gca(projection = ’3d’)

ax.set_xlim3d(-1, 1) # set x axis limits

ax.set_ylim3d(-1, 1) # set y axis limits

ax.set_zlim3d(-1, 1) # set z axis limits

ax.plot_surface(X, Y, Z, color = ’cyan’, rstride = 1,cstride = 1) # plot surface as a whole

ax.axis(’off’) # do not plot co-ordinate axes

plt.show() # show surface a a whole

b) A second problem arises because the module matplotlib plots a surface by meshes3 as
a whole and does not allow to evidence the process of the manifold construction step

3Meshes are small portions of surface (generally curved 4 or 3-lateral) which generally allow satisfactory
colormap and lighiting effects.
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by step. While, in order to our intent it is quite interesting to show the constructive
process either when it is sequentially ordered or when it evolves randomly. This second
problem may be overridden building a surface point by point, by parametric equations
identifying the coordinates of each point of the shape to be modeled. By point here
we necessarily mean a finite dimensional elementary cell suitably chosen, like a very
small disk or sphere, or something else. Either graphics module (faster) or matplotlib
module animation (slower but genuinly 3-dimensional) can be usefully employed. The
relevant advantage of a point by point shape generation, in order to model biological
systems, will be that each elementary sphere may be considered a rough but significant
approximation of a living cell. So the full process could appear as a simulation of cell
multiplication generating a complete organ of a living being. In particular a random
cell replication process will be of special interest when each daughter cell is located
contiguously respect to the mother cell. The latter circumstance characterizes the well
known cellular automata.4

c) The latter method solves the previous problem but involves a new one providing, gen-
erally, a poor, when not totally unrealistic, rendering quality.

The following images show some results related both to sequentially ordered and random
generation processes of a spherical shell obtained implementing either graphics or matplotlib
modules of Python 3.

Sphere generated by Python 3 “graphycs” module

i) Sequentially ordered generation process

Fig.3 - Sphere generated sequentially by small disks (graphics module)

VIEW ANIMATION (requires internet connection)

4See, chapter ??.

http://albertostrumia.it/sites/default/files/Animations/SphereBLSQ.m4v
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Python 3 code to generate fig. 3

#################################

# Sequential sphere generation

# by Paramteric equations

# (graphics module)

#############################7####

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import * # import graphics module

import numpy as np # import numpy module

x = 200 # set x initial value

y = 100 # set y initial value

z = 100 # set z initial value

bgColor = "white" # set background color

title = "Sphere" # set window title

winWidth = 400 # set window width

winHeight = 400 # set window height

def pBall(x,y,z,rayBall,colBall): # def cell function

X = x

Y = y

Circle(Point(X,Y),rayBall)

Circle(Point(X,Y),rayBall).draw(win).setFill(colBall)

win = GraphWin(title, winWidth, winHeight) # define window

win.setBackground(bgColor) # set background color

n = 126 # set number of angular steps

x0 = np.int(.5*winWidth) # set sphere center x co-ordinate

y0 = np.int(.5*winHeight) # set sphere center y co-ordinate

z0 = 0 # set sphere center z co-ordinate

R = 150 # set sphere radius value

t = 0 # set initial t parameter value

u = 0 # set initial u parameter value

# def 3D rendering functions on 2D plane

def xx(t):

return R*np.sin(np.pi-np.pi*t/n)

def yy(t):

return R*np.cos(np.pi-np.pi*t/n)

def co(u):

return np.cos(2*np.pi*u/n)

def si(u):

return np.sin(2*np.pi*u/n)

def x(t,u):

return xx(t)*co(u)
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def z(t,u):

return yy(t)*si(u)

# plot sphere point by point by spherical co-ordinates parametric equations

for u in range(0,n,1):

for t in range(0,n,2):

pBall(x0 + x(t,u),y0 - yy(t),0,4, color_rgb(255,2*t,2*u))

win.getMouse() # wait for mouse click

win.close() # close window

ii) Random generation process

Fig.4 - Sphere generated randomly by small disks (graphics module)

VIEW ANIMATION (requires internet connection)

Python 3 code to generatefig. 4

###################################

# Random sphere generation

# by Paramteric equations

# (graphics module)

###################################

# specify the absolute path of mod graphics folder (depends on user’s choice)

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import * # import graphics module

import numpy as np # import numpy module

import random as rd # import random module

x = 200 # set x initial value

y = 100 # set y initial value

z = 100 # set z initial value

http://albertostrumia.it/sites/default/files/Animations/SphereBLRD.m4v
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bgColor = "white" # set background color

title = "Sphere" # set window title

winWidth = 400 # set window width

winHeight = 400 # set window height

def pBall(x,y,z,rayBall,colBall): # def cell function

X = x

Y = y

Circle(Point(X,Y),rayBall)

Circle(Point(X,Y),rayBall).draw(win).setFill(colBall)

win = GraphWin(title, winWidth, winHeight) # define window

win.setBackground(bgColor) # set background color

n = 126 # set number of angular steps

x0 = np.int(.5*winWidth) # set sphere center x co-ordinate

y0 = np.int(.5*winHeight) # set sphere center y co-ordinate

z0 = 0 # set sphere center z co-ordinate

R = 150 # set sphere radius value

t = 0 # set initial t parameter value

u = 0 # set initial u parameter value

# def 3D rendering functions on 2D plane

def xx(t):

return R*np.sin(np.pi-np.pi*t/n)

def yy(t):

return R*np.cos(np.pi-np.pi*t/n)

def co(u):

return np.cos(2*np.pi*u/n)

def si(u):

return np.sin(2*np.pi*u/n)

def x(t,u):

return xx(t)*co(u)

def z(t,u):

return yy(t)*si(u)

i = 1 # set positive value for random cycle index

while i > 0: # random cycle

u = rd.randrange(np.int(n/2),n,1) # assign random values to parameter u

t = rd.randrange(1,n,2) # assign random values to parameter t

# plot sphere point by point by spherical co-ordinates parametric equations

pBall(x0 + x(t,u),y0 - yy(t),0,4, color_rgb(255,2*t,2*u))

# notice: the infinite loop needs to be stopped by the user when at the desired image stage

Sphere generated by Python 3 “matplotlib” module

The matplotlib module performs a genuine 3D plot and a more precise structure than the
graphics module plots avoiding overlapping of contiguous small spheres as it results more
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evident especially in a random generating process. But it takes a longer computing time.

i) Sequentially ordered generation process5

Fig.5 - Sphere generated sequentially by small disks (matplotlib module)

VIEW ANIMATION (requires internet connection)

Python 3 code to generatefig. 5

###################################

# Sequential sphere generation

# by Paramteric equations

# (matplotlib module)

###################################

from mpl_toolkits import mplot3d # import matplotlib module

import matplotlib.pyplot as plt # import matplotlib pyplot module

import numpy as np # import numpy module

import random as rd # import random module

r = 6.0 # set radius value

n = 100 # set number of cycles

theta = np.linspace(0.0, 2*np.pi, n) # set theta co-ordinate array

phi = np.linspace(0.0, np.pi, n) # set phi co-ordinate array

theta, phi = np.meshgrid(theta, phi) # set theta,phi grid

X = - r*np.sin(-.35*np.pi+theta)*np.sin(phi) # spherical to Cartesian transformations

Y = r*np.cos(-.35*np.pi+theta)*np.sin(phi)

Z = r*np.cos(phi)

ax = plt.axes(projection=’3d’, aspect=.85) # set 3D axes system

ax.set_xlim3d([-4.5, 4.5]) # set x limits

ax.set_ylim3d([-5.0, 5.0]) # set y limits

ax.set_zlim3d([-5.0, 4.0]) # set z limits

5Animations requiring too long time will be limited in few minutes.

http://albertostrumia.it/sites/default/files/Animations/SphereMPLSQ.m4v
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ax.set_axis_off() # do not plot axes

for u in range(0,n,1): # sequential parameter u cycle

for t in range(0,n,1): # sequential parameter t cycle

ax.scatter(X[t,u], Y[t,u], Z[t,u], s = 12, # plot poins

c = [1,.7*np.abs(np.cos(2*np.pi*(1+u/n))),

np.abs(np.sin(np.pi*(1+t/n)))], marker="o",

edgecolor=[.5,.2,.3],zorder=2)

plt.pause(0.001) # animation pause interval

plt.show() # show plots

ii) Random generation process

Fig.6 - Sphere generated randomly by small disks (matplotlib module)

VIEW ANIMATION (requires internet connection)

Python 3 code to generate fig. 6

###################################

# Random sphere generation

# by Paramteric equations

# (matplotlib module)

###################################

from mpl_toolkits import mplot3d # import matplotlib module

import matplotlib.pyplot as plt # import pylot module

import numpy as np # import numpy module

import random as rd # import random module

r = 6.0 # set radius value

n = 100 # set number of cycles

theta = np.linspace(0.0, 2*np.pi, n) # set theta co-ordinate array

phi = np.linspace(0.0, np.pi, n) # set phi co-ordinate array

theta, phi = np.meshgrid(theta, phi) # set theta,phi grid

X = r * np.sin(theta)*np.sin(phi) # spherical to Cartesian transformations

Y = r * np.cos(theta)*np.sin(phi)

Z = r*np.cos(phi)

http://albertostrumia.it/sites/default/files/Animations/SphereMPLRD.m4v
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ax = plt.axes(projection=’3d’, aspect=.85) # set 3D axes system

ax.plot_wireframe(X, Y, Z, edgecolor=’pink’,zorder=1,alpha=0.08) # background sphere

ax.set_xlim3d([-4.5, 4.5]) # set x limits

ax.set_ylim3d([-5.0, 5.0]) # set y limits

ax.set_zlim3d([-5.0, 4.0]) # set z limits

ax.set_axis_off() # do not plot axes

while r > 0: # random cycle

indX = np.random.choice(X.shape[0], 1, replace=False)

indY = np.random.choice(Y.shape[1], 1, replace=False)

ax.scatter(X[indX,indY], Y[indX,indY], Z[indX,indY],

s = 12, c = [1,.7*np.abs(np.cos(2*np.pi*(1+indX/n))),

np.abs(np.sin(np.pi*(1+indY/n)))], marker="o",

edgecolor=[.5,.2,.3],zorder=2)

plt.pause(0.001) # animation pause time

plt.show() # show plot

In order to accomplish a highly satisfactory rendering one usefully is led to replace
Python 3 with a graphically more performant ray tracing programming language like POV-
Ray.

3.2 POV-Ray rendering of surfaces

Three dimensional image rendering is improved enormously recurring to a ray tracing program
language like POV-Ray, which offers a more realistic resemblance to the objects, as one can
just see even in simple shapes like, e.g., a sphere or a torus (see fig. 7).

Fig.7 - POV-Ray rendering of a sphere and a torus as wholes

A ray tracing software proves very useful in order to a realistic rendering of 3D bodies as
wholes. But it may be easily adapted even to show how some structures can be generated point
by point in a similar way as python3 can do. This way of implementing rendering algorithms
proves especially useful, for our purposes, in relation to biological systems, generated by cells
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and not only. The procedure requires to build a lot of images, like photograms recording
each step fo the generation process, from which it is also possible to make animated movies.
Of course very heavy calculations are needed and the computational time increases as the
complexity of the structure to be generated grows.

3.2.1 Sphere generated sequentially by small balls

The method is easily illustrated by a first very simple example of an ordered structure like a
sphere generated by a sequentially ordered process.

Fig.8 - Sphere generated sequentially by small balls (POV-Ray 3.7)

VIEW ANIMATION (requires internet connection)

POV-Ray 3.7 code to generate fig. 8

//==============================================

// Sequential 3D surface generation (sphere)

// by POV-Ray 3.7

//==============================================

#include "glass.inc" // include pigment files

#include "colors.inc"

#include "metals.inc"

global_settings {assumed_gamma 1.0} // set gamma value

background { color rgb <00,0.0,0.0> } // set black background color

camera { // set view point (camera) location

location <-10, 10, -30>

look_at <0, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

light_source {

http://albertostrumia.it/sites/default/files/Animations/SpherePOVSQ.m4v
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< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

light_source {

<-3, 10, -3>

color White

}

#declare R = 9; // set spere radius value

#declare n = 100; // set number of cycles

#declare X = array[n+1][n+1]; // define x co-rdinate array

#declare Y = array[n+1][n+1]; // define y co-rdinate array

#declare Z = array[n+1][n+1]; // define z co-rdinate array

#for (p, 0, n) // polar co-ordinate theta cycle

#declare Th = p*2*pi/n;

#for (q, 0, n) // polar co-ordinate phi cycle

#declare Ph = q*pi/n;

#declare X[p][q] = R*cos(Th)*sin(Ph); // polar to Cartesian co-ordinates

#declare Y[p][q] = R*sin(Th)*sin(Ph);

#declare Z[p][q] = R*cos(Ph);

#end // end for q // for cycles end

#end // end for p

#declare i = 0; // define animation cycles indices

#declare j = 0;

#if ( i <= n ) // index conditionals

#if (j <= n )

#declare j = (n+5)*clock; // animation clock

#declare i = (n+5)*clock;

#for(p,0,i) // individual cell plotting sequential cycles

#for(q,0,j)

sphere {

< X[p][q], Y[p][q], Z[p][q] >, .4 // spherical cell location and radius

texture { // pigment and finishing choices

pigment{ P_Copper3 }}

finish {

ambient .1

specular .5

metallic

}}

#end // end for q // for cycles end

#end // end for p

#end // end for j // conditionals end

#end // end for i

3.2.2 Sphere generated randomly by small balls

The same spherical ordered structure can be generated also choosing randomly the co-
ordinates of each elementary ball, instead of assigning them sequentially.
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Fig.9 - Sphere generated randomly by small balls (POV-Ray 3.7)

VIEW ANIMATION (requires internet connection)

POV-Ray 3.7 code to generatefig. 9

//==============================================

// Random 3D surface generation (Sphere)

// by POV-Ray 3.7

//==============================================

#include "glass.inc" // include pigment files

#include "colors.inc"

#include "metals.inc"

global_settings {assumed_gamma 1.0} // set gamma value

background { color rgb <00,0.0,0.0> } // set black background color

camera { // set view point (camera) location

location <-10, 10, -30>

look_at <0, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

<-3, 10, -3>

color White

}

#declare R = 9; // set spere radius value

#declare n = 100; // set number of cycles

#declare X = array[n+1][n+1]; // define x co-rdinate array

#declare Y = array[n+1][n+1]; // define y co-rdinate array

http://albertostrumia.it/sites/default/files/Animations/SpherePOVRD.m4v


Chapter 3 – Three-dimensional structures from algorithms 61

#declare Z = array[n+1][n+1]; // define z co-rdinate array

#for (p, 0, n) // polar co-ordinate theta cycle

#declare Th = p*2*pi/n;

#for (q, 0, n) // polar co-ordinate phi cycle

#declare Ph = q*pi/n;

#declare X[p][q] = R*cos(Th)*sin(Ph); // polar to Cartesian co-ordinates

#declare Y[p][q] = R*sin(Th)*sin(Ph);

#declare Z[p][q] = R*cos(Ph);

#end // end for q // for cycles end

#end // end for p

#declare Rnd_1 = seed (1153); // declare random indices

#declare Rnd_2 = seed (553) ;

#declare j = (n+5)*clock; // animation clock

#declare i = (n+5)*clock;

#for(r,0,i) // individual cell plotting random cycles

#for(s,0,j)

#declare p = int(n*rand(Rnd_1)); // set random variables

#declare q = int(n*rand(Rnd_2));

sphere {

< X[p][q], Y[p][q], Z[p][q] >, .4 // spherical cell location and radius

texture { // pigment and finishing choices

pigment{ P_Copper3 }}

finish {

ambient .1

specular .5

metallic

}}

#end // for cycles end

#end

3.3 Three-dimensional fractals

In the next three chapters we will apply the methodologies we have elaborated until now to
render complex 3D ordered structures as fractals generated

– either by sequentially ordered processes

– or by random process

guided by a same algorithmic law.

As we have seen for the two-dimensional structures, order

– appears manifestly when a sequentially ordered process is employed

– while it seems to be hidden by chance when a random process is performed.



a) A first class of 3D fractals we will present is offered by the so called fractal landscapes.6

Resulting images may look even very impressive and beautiful, but on a mathematical
standpoint they do not increase the level of complexity involved in the related 2D
fractals.

b) A second class of 3D fractals can be built performing a rotation of a 2D fractal around
a symmetry axis, if any.7 Also this procedure does not increase the level of complexity
of the structure, notwithstanding the beauty of the resulting pictures.

c) A third class of 3D complex fractal structures is obtained recurring to quaternions
or hpercomplex numbers which generalize complex numbers adding further imaginary
units. In this case the level of complexity is actually increased respect to the related
2D sets of Mandelbrot, Julia and Newton’s method kinds.8

6See, chapter 4.
7See, chapter 5.
8See, chapter 6.



Chapter 4

3D fractal landscapes
Rendering structures as wholes or by sequential or random
processes

4.1 Python 3 rendering of fractal landscapes

Fractal landscapes represent the first attempt to add a third dimension to fractal structures.
The method consists in adding a third Cartesian axis (z) to the abscissa (x) and ordinate
(y) axes of a plane fractal structure, which is naturally provided by the escape rate (number
of recursion cycles needed to reach some threshold value) or by the value achieved by the
modulus of a recursive function after a suitable number of cycles characterizing each point
of the related 2D-fractal. Python 3 offers several 3D plotting methods like mesh, contour
and scatter plots which are generally applied to graphics of functions and data, and can be
usefully used even to paint fractal landscapes as wholes. Here are some examples of each
method.

4.1.1 Mesh plots

Mesh plots are generally useful to render regular surfaces as wholes, defined by Cartesian
or parametric equations. Surprisingly matplotlib module proves efficient even in rendering
fractal surfaces, which are highly non-regular because of strong jumps between the values
assumed even in very near points in the domain. The escape rate or the modulus of the
recursive function can be represented either as elevation respect to the ground xy plane or
as depth, so that landscapes similar to mountain or valley and lake, sea scenarios can be
realized.

a) Here are two scenes of Mandelbrot landscapes, the former as a mountain and the latter
as a lake. A suitable choice of the color maps contributes essentially to the visual
impact. Computational algorithm is based on complex arrays.1

1See chap. 2, §2.1.2. The method is very fast but does not allow an high number of recursion cycles because
of overflow occurrences.

63
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Fig.1 - Python 3 matplotlib landscapes mesh rendering of a Mandelbrot set as a whole

Python 3 codes to generate fig 1 pictures

#########################################################

# Mandelbrot mountain landscape generation as a whole

# (matplotlib Mesh plot)

#########################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=-120,elev=45) # set view orientation

ax.dist = 5.0 # set viewpoint distance

ax.set_facecolor([.1,0.0,0.0]) # set ground color

n = 8 # set number of cycles

dx = -0.7 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.5 # set square area side

M = 200 # set side number of pixels

def f(Z): # def scale damping of the elevation function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array

y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

Z = np.zeros(M) # complex plane starting points area

W = np.zeros((M,M)) # zero matrix of elevation values

C = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = f(Z) # smoothed sum moduls
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ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-L,2*L) # set z axis limits

ax.axis("off") # do not plot axes

ax.plot_surface(X, Y, W, rstride=1, cstride=1, cmap="pink") # plot surface as a whole

plt.show() # show plot

##########################################################

# Mandelbrot valley landscape generation as a whole

# (matplotlib Mesh plot)

#########################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=70,elev=70) # set view orientation

ax.dist = 6 # set viewpoint distance

ax.set_facecolor([.5,0.0,0.0]) # set ground color

n = 9 # set number of cycles

dx = -0.6 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.4 # set square area side

M = 400 # set side number of pixels

x = np.linspace(dx-L,dx+L,M) # x variable array

y = np.linspace(dy-L,dy+L,M) # y variable array

X,Y = np.meshgrid(x,y,sparse=True) # square area grid

Z = np.zeros(M) # complex plane starting points area

C = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z*Z + C

Z = ZZ

W = np.e**(-.6*np.abs(Z)) # smoothed sum moduls

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-L,L) # set z axis limits

ax.axis("off") # do not plot axes

# plot surface as a whole

surf = ax.plot_surface(X, Y, -W, cmap=cm.jet,linewidth=0, antialiased=False)

plt.show() show plot

b) Here are two scenes of Julia landscapes, the former as a mountain and the latter as a
lake and the related python 3 code. Of course also in this picture a suitable choice of



66 A. Strumia, Information as order hidden within chance

the color maps contributes essentially to the visual effect. Computational algorithm is
based too on complex arrays.2

Fig.2 - Python 3 landscapes mesh rendering of a Julia set as a whole

Python 3 codes to generate fig 2 pictures

#####################################################

# Julia mountain landscape generation as a whole

# (matplotlib Mesh plot)

#####################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=150,elev=60) # set view orientation

ax.dist = 3.5 # set viewpoint distance

ax.set_facecolor([0.5,0.0,0.0]) # set ground color

n = 9 # set number of cycles

dx = 0.0 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 2.0 # set square area side

M = 200 # set side number of pixels

def f(Z): # def scale damping of the elevation function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array

y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

cX = -0.7454294 # set parameter C real part value

2See chap. 2, §2.1.2.
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cY = 0 # set parameter C imaginary part value

C = cX + 1j*cY # complex C matrix

W = np.zeros((M,M)) # zero matrix of elevation values

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-2*L,2*L) # set z axis limits

ax.axis("off") # do not plot axes

ax.plot_surface(X, Y, -W, rstride=1, cstride=1, cmap="jet") # plot surface as a whole

plt.show() # show plot

################################################

# Julia valley landscape generation as a whole

# (matplotlib Mesh plot)

################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=150,elev=60) # set view orientation

ax.dist = 3.5 # set viewpoint distance

ax.set_facecolor([0.5,0.0,0.0]) # set ground color

n = 9 # set number of cycles

dx = 0.0 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 2.0 # set square area side

M = 200 # set side number of pixels

def f(Z): # def scale damping of the depth function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array

y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

cX = -0.7454294 # set parameter C real part value

cY = 0 # set parameter C imaginary part value

C = cX + 1j*cY # complex C matrix

W = np.zeros((M,M)) # zero matrix of elevation values

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-2*L,2*L) # set z axis limits
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ax.axis("off") # do not plot axes

ax.plot_surface(X, Y, -W, rstride=1, cstride=1, cmap="jet") # plot surface as a whole

plt.show() # show plot

c) And here are two scenes of Newton’s method set landscapes, the former as a mountain
and the latter as a lake and the related python 3 code.3

Fig.3 - Python 3 matplotlib landscapes mesh rendering of a Newton set as a whole

Python 3 codes to generate fig 3 pictures

################################################################

# Newton’s method mountain landscape generation as a whole

# (matplotlib Mesh plot)

################################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=-130,elev=45) # set view orientation

ax.dist = 4.3 # set viewpoint distance

ax.set_facecolor([.85,.85,.45]) # set ground color

n = 8 # set number of cycles

dx = 0.0 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.0 # set square area side

M = 300 # set side number of pixels

3See chap. 2, §2.1.2.
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def f(Z): # def scale damping of the elevation function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array

y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z - (Z**4 + 1)/(4*Z**3)

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-2.5*L,2*L) # set z axis limits

ax.axis("off") # do not plot axes

ax.plot_surface(X, Y, -W, rstride=1, cstride=1, cmap="terrain") # plot surface as a whole

plt.show() # show plot

############################################################

# Newton’s method valley landscape generation as a whole

# (matplotlib Mesh plot)

############################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=-140,elev=45) # set view orientation

ax.dist = 3.0 # set viewpoint distance

ax.set_facecolor([1.0,.6,.15]) # set ground color

n = 8 # set number of cycles

dx = 0.0 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.3 # set square area side

M = 300 # set side number of pixels

def f(Z): # def scale damping of the depth function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array

y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z - (Z**4 + 1)/(4*Z**3)

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-3.5*L,4*L) # set z axis limits
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ax.axis("off") # do not plot axes

ax.plot_surface(X, Y, W, rstride=1, cstride=1, cmap=’flag’) # plot surface as a whole

plt.show() # show plot

4.1.2 Contour plots

A spectacular alternative to mesh plots to generate fractal landscapes is offered by contour
plots. The advantage of this methodology is that of showing the level curves along which
the modulus of the recursive function assumes a constant value. In the following figures we
show the same structure sets (Mandelbrot, Julia and Newton’s method) related contour plot
landscapes in order to offer to the reader the ability to compare the results.

a) Mandelbrot contour plot landscapes

Fig.4 - Python 3 matplotlib landscapes contour rendering of a Mandelbrot set as a whole

Python 3 codes to generate fig 4 pictures

###########################################################

# Mandelbrot mountain landscape generation as a whole

# (matplotlib Contour plot)

###########################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=120,elev=45) # set view orientation
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ax.dist = 5 # set viewpoint distance

ax.set_facecolor([0.0,0.0,0.0]) # set background color

n = 16 # set number of cycles

dx = -0.6 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.3 # set square area side

M = 200 # set side number of pixels

def f(Z): # def scale damping of the elevation function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array

y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

Z = np.zeros(M) # complex plane starting points area

W = np.zeros((M,M)) # zero matrix of elevation values

C = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-.5*L,1.5*L) # set z axis limits

ax.axis("off") # do not plot axes

ax.contourf3D(X, Y, W, 2*n, cmap="terrain") # make contour plot

plt.show() # show plot

########################################################

# Mandelbrot valley landscape generation as a whole

# (matplotlib Contour plot)

########################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=120,elev=60) # set view orientation

ax.dist = 4.5 # set viewpoint distance

ax.set_facecolor([0.0,0.0,0.0]) # set background color

n = 20 # set number of cycles

dx = -0.6 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.3 # set square area side

M = 200 # set side number of pixels

def f(Z): # def scale damping of the elevation function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array

y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid
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Z = np.zeros(M) # complex plane starting points area

W = np.zeros((M,M)) # zero matrix of elevation values

C = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-L,1.5*L) # set x axis limits

ax.axis("off") # do not plot axes

ax.contourf3D(X, Y, -W, 2*n, cmap="jet") # make contour plot

plt.show() # show plot

b) Julia contour plot landscapes

Fig.5 - Python 3 matplotlib landscapes contour rendering of a Julia set as a whole

Python 3 codes to generate fig 5 pictures

#####################################################

# Julia mountain landscape generation as a whole

# (matplotlib Contour plot)

#####################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=120,elev=45) # set view orientation
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ax.dist = 4.5 # set viewpoint distance

ax.set_facecolor([0.0,0.3,0.6]) # set background color

n = 16 # set number of cycles

dx = -0.1 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.7 # set square area side

M = 200 # set side number of pixels

def f(Z): # def scale damping of the elevation function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array

y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

cX = -0.7454294 # C parameter real part value

cY = 0 # C parameter imaginary part value

C = cX + 1j*cY # complex C matrix

W = np.zeros((M,M)) # zero matrix of elevation values

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-.8*L,1.5*L) # set z axis limits

ax.axis("off") # do not plot axes

ax.contourf3D(X, Y, W, 2*n, cmap="pink") # make contour plot

plt.show() # show plot

###################################################

# Julia valley landscape generation as a whole

# (matplotlib Contour plot)

###################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=120,elev=60) # set view orientation

ax.dist = 3.7 # set viewpoint distance

ax.set_facecolor([0.7,0.0,0.0]) # set background color

n = 6 # set number of cycles

dx = -0.1 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 2.0 # set square area side

M = 200 # set side number of pixels

def f(Z): # def scale damping of the elevation function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array
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y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

cX = -0.7454294 # C parameter real part value

cY = 0 # C parameter imaginary part value

C = cX + 1j*cY # complex C matrix

W = np.zeros((M,M)) # zero matrix of depth values

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-1.5*L,1.5*L) # set z axis limits

ax.axis("off") # do not plot axes

ax.contourf3D(X, Y, -W, 2*n, cmap="jet") # make contour plot

plt.show() # show plot

c) Newton’s method contour plot landscapes

Fig.6 - Python 3 matplotlib landscapes contour rendering of a Newton’s method set as a whole

Python 3 codes to generate fig 6 pictures

##############################################################

# Newton’s method mountain landscape generation as a whole

# (matplotlib Contour plot)

##############################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module
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fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=-130,elev=45) # set view orientation

ax.dist = 4.3 # set viewpoint distance

ax.set_facecolor([.85,.85,.45]) # set background color

n = 8 # set number of cycles

dx = 0.0 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.0 # set square area side

M = 300 # set side number of pixels

def f(Z): # def scale damping of the depth function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array

y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z - (Z**4 + 1)/(4*Z**3)

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-2.5*L,2*L) # set z axis limits

ax.axis("off") # do not plot axes

ax.plot_surface(X, Y, -W, rstride=1, cstride=1, cmap="terrain") # make contour plot

plt.show() # show plot

###########################################################

# Newton’s method valley landscape generation as a whole

# (matplotlib Contour plot)

###########################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=-140,elev=45) # set view orientation

ax.dist = 3.0 # set viewpoint distance

ax.set_facecolor([1.0,.6,.15]) # set background color

n = 8 # set number of cycles

dx = 0.0 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.3 # set square area side

M = 300 # set side number of pixels

def f(Z): # def scale damping of the elevation function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array
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y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

Z = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z - (Z**4 + 1)/(4*Z**3)

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-3.5*L,4*L) # set z axis limits

ax.axis("off") # do not plot axes

ax.plot_surface(X, Y, W, rstride=1, cstride=1, cmap=’flag’) # make contour plot

plt.show() # show plot

4.1.3 Scatter plots

Sequential rendering

The point by point process of construction of 3D ordered structures requires a longer time
machine calculation than the 2D structures, unless we drastically reduce the image resolution.
As we have already seen about the sphere4 it may performed:

– either by Python 3 employing graphics modulus or matplotlib modulus

– or, with better rendering results, by POV-Ray 3.7

following a sequentially ordered strategy or a random strategy, which apparently hides the
law governing an algorithm.

We will see, now, how to apply those methods to build fractal landscapes. We limit
ourselves to one example for Mandelbrot set and one example for a Julia set, leaving to the
interested reader the pleasure (or trouble. . . ) of implementing further more applications.5

a) Mandelbrot scatter sequential landscape

Python 3 code to generate fig 7

#############################################

# Sequential Mandelbrot mountain landscape

# generation (matplotlib scatter plot)

#############################################

import matplotlib.pyplot as plt # import matplotlib modules

4See, §3.2.1 and §3.2.2.
5The algorithmic procedure here implemented involves a compression of the shape during the generation

process. While to speed up animation we have reduced resolution and taken of account of the symmetry of
the set.
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Fig.7 - Mandelbrot mountain landscape generated sequentially by small disks (matplotlib scatter plot)

VIEW ANIMATION (requires internet connection)

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=-120,elev=45) # set view orientation

ax.dist = 5.0 # set viewpoint distance

ax.set_facecolor([0.0,0.0,0.0]) # set background color

n = 8 # set number of cycles

dx = -0.7 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.5 # set square area side

M = 200 # set side number of pixels

def f(Z): # def scale damping of the elevation function

return np.e**(-np.abs(Z))

x = np.linspace(-L+dx,L+dx,M) # x variable array

y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(x,y) # square area grid

Z = np.zeros(M) # complex plane starting points area

http://albertostrumia.it/sites/default/files/Animations/MandLSCSQ.m4v
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W = np.zeros((M,M)) # zero matrix of elevation values

C = X + 1j*Y # complex plane area

for k in range(1,n+1): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = f(Z)

ax.set_xlim(dx-L,dx+L) # set x axis limits

ax.set_zlim(dy-L,dy+L) # set y axis limits

ax.set_zlim(-L,2*L) # set z axis limits

ax.axis("off") # do not plot axes

for p in range(1,M,2): # make scatter sequential plot

for q in range(1,M,2):

if W[p,q] > 0:

for i in range(1,10,1):

ax.scatter(X[p,q], Y[p,q], W[p,q]*i/10, s=2, c=

[1.0-np.abs(np.cos(np.pi*W[p,q]))*i/10,

np.abs(np.cos(np.pi*W[p,q]))*i/10,

np.abs(np.sin(np.pi*W[p,q]))*i/10], cmap=’cm.hsv’, marker="s",zorder=2)

plt.pause(0.01) # animation pause interval

plt.show() # show plot

b) Julia (c = −0.7454294) scatter sequential landscape

Python 3 code to generate fig 8

########################################################

# Sequential Julia (c = -0.7454294) mountain landscape

# generation (matplotlib scatter plot)

########################################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=200,elev=60) # set view orientation

ax.dist = 3.5 # set viewpoint distance

ax.set_facecolor([0.0,0.1,0.2]) # set background color

n = 11 # set number of cycles

R = 0.1 # set radius value

dx = 0.0 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

L = 1.4 # set square area side

M = 400 # set side number of pixels

X = np.linspace(-L+dx,L+dx,M) # x variable array
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Fig.8 - Julia (c = −0.7454294) mountain landscape generated sequentially by small disks
(matplotlib scatter plot)

VIEW ANIMATION (requires internet connection)

Y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(X,Y) # square area grid

Z = X + 1j*Y # complex plane area

cX = -0.7454294 # set c parameter real part value

cY = 0.0 # set c parameter imaginary part value

C = cX + 1j*cY # complex C matrix

W = np.zeros((M,M)) # zero matrix of depth values

for k in range(0,n): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = np.e**(-np.abs(Z))

ax.set_xlim(dx-2*L,dx+2*L) # set x axis limits

ax.set_zlim(dy-2*L,dy+2*L) # set y axis limits

ax.set_zlim(-1.3*L,2*L) # set z axis limits

ax.axis("off") # do not plot axes

for q in range(0,M,2): # make scatter sequential plot

for p in range(0,M,2):

if W[p,q] > R:

for i in range(0,10,1):

ax.scatter(X[p,q], Y[p,q], W[p,q]*i/10, s = 1, c =

[1.0-np.abs(np.cos(np.pi*W[p,q]))*i/10,

np.abs(np.cos(np.pi*W[p,q]))*i/10,

http://albertostrumia.it/sites/default/files/Animations/JuliaLSCSQ.m4v
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np.abs(np.sin(np.pi*W[p,q]))*i/10], marker="o",zorder=2)

else:

ax.scatter(L+X[p,q], Y[p,q], 0.0, s = 1, c =

[0.0,0.1,0.2], marker="o",zorder=2)

plt.pause(0.001) # animation pause interval

plt.show() # show plot

Random rendering

a) Mandelbrot scatter random landscape

Fig.9 - Mandelbrot mountain landscape generated randomly by small disks (matplotlib scatter plot)

VIEW ANIMATION (requires internet connection)

Python 3 code to generate fig 9

###########################################

# Random Mandelbrot mountain landscape

# generation (matplotlib scatter plot)

###########################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

http://albertostrumia.it/sites/default/files/Animations/MandLSCRD.m4v
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import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

import random as rd # import random module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=200,elev=60) # set view orientation

ax.dist = 5.0 # set viewpoint distance

ax.set_facecolor([0.0,0.1,0.2]) # set background color

n = 8 # set number of cycles

dx = -0.3 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

R = 0.1 # set radius value

L = 1.5 # set square area side

M = 400 # set side number of pixels

X = np.linspace(-L+dx,L+dx,M) # x variable array

Y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(X,Y) # square area grid

Z = np.zeros(M) # complex plane starting points area

cX = np.linspace(-L+dx,L+dx,M) # c parameter real part array

cY = np.linspace(-L+dy,L+dy,M) # c parameter imaginary part array

cX,cY = np.meshgrid(cX,cY) # c parameter grid

C = cX + 1j*cY # complex C matrix

W = np.zeros((M,M)) # zero matrix of elevation values

for k in range(0,n): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = np.e**(-np.abs(Z))

ax.set_xlim(dx-2*L,dx+2*L) # set x axis limits

ax.set_zlim(dy-2*L,dy+2*L) # set y axis limits

ax.set_zlim(-1.3*L,2*L) # set z axis limits

ax.axis("off") # do not plot axes

while R > 0: # make scatter random plot

p = rd.randrange(0,M,1)

q = rd.randrange(0,M,1)

if W[p,q] > R:

for i in range(0,10,1):

ax.scatter(X[p,q], Y[p,q], W[p,q]*i/10, s = 1, c =

[1.0-np.abs(np.cos(np.pi*W[p,q]))*i/10,

np.abs(np.cos(np.pi*W[p,q]))*i/10,

np.abs(np.sin(np.pi*W[p,q]))*i/10], marker="o",zorder=2)

else:

ax.scatter(X[p,q], Y[p,q], 0.0, s = 1, c = [0.0,0.1,0.2], marker="o",zorder=2)

plt.pause(0.001) # animation pause interval

plt.show() # show plot
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b) Julia (c = −0.7454294) scatter random landscape

Fig.10 - Julia mountain landscape generated randomly by small disks (matplotlib scatter plot)

VIEW ANIMATION (requires internet connection)

Python 3 code to generate fig 10

###########################################

# Random Julia mountain landscape

# generation (matplotlib scatter plot)

###########################################

import matplotlib.pyplot as plt # import matplotlib modules

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.figure as fg

from matplotlib import cm # import color maps module

import numpy as np # import numpy module

import random as rd # import random module

fig = plt.figure() # set 3D figure environment

ax = fig.add_subplot(111, projection=’3d’)

ax.view_init(azim=200,elev=60) # set view orientation

ax.dist = 3.5 # set viewpoint distance

ax.set_facecolor([0.0,0.1,0.2]) # set background color

n = 11 # set number of cycles

dx = 0.0 # set initial x parameter shift

dy = 0.0 # set initial y parameter shift

http://albertostrumia.it/sites/default/files/Animations/JuliaLSCRD.m4v
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R = 0.1 # set radius value

L = 1.4 # set square area side

M = 400 # set side number of pixels

X = np.linspace(-L+dx,L+dx,M) # x variable array

Y = np.linspace(-L+dy,L+dy,M) # y variable array

X,Y = np.meshgrid(X,Y) # square area grid

Z = X + 1j*Y # complex plane area

cX = -0.7454294 # set parameter c real part value

cY = 0.0 # set parameter c imaginary part value

C = cX + 1j*cY # complex C matrix

W = np.zeros((M,M)) # zero matrix of elevation values

for k in range(0,n): # recursion cycle

ZZ = Z**2 + C

Z = ZZ

W = np.e**(-np.abs(Z))

ax.set_xlim(dx-2*L,dx+2*L) # set x axis limits

ax.set_zlim(dy-2*L,dy+2*L) # set y axis limits

ax.set_zlim(-1.3*L,2*L) # set z axis limits

ax.axis("off") # do not plot axes

while R > 0: # make scatter random plot

p = rd.randrange(0,M,1)

q = rd.randrange(0,M,1)

if W[p,q] > R:

for i in range(0,10,1):

ax.scatter(X[p,q], Y[p,q], W[p,q]*i/10, s = 1, c =

[1.0-np.abs(np.cos(np.pi*W[p,q]))*i/10,

np.abs(np.cos(np.pi*W[p,q]))*i/10,

np.abs(np.sin(np.pi*W[p,q]))*i/10]

, marker="o",zorder=2)

else:

ax.scatter(L+X[p,q], Y[p,q], 0.0, s = 1, c = [0.0,0.1,0.2], marker="o",zorder=2)

plt.pause(0.001) # animation pause interval

plt.show() # show plot

4.2 POV-Ray rendering of fractal landscapes

4.2.1 The POV-Ray 3.7 functions “Mandel” and “Julia”

The 3D rendering software POV-Ray 3.7 offers some special functions explicitly devoted to
Mandelbrot and Julia sets generated by powers of order n (up to n = 33).

Moreover the same “Mandel” and “Julia” functions allow, by rotation in 3D to obtain
“flat” landscapes of the same sets in a very short computation time.

But No elevation is provided by those tools.

These functions provide refined pictures of those sets as “flat” wholes like, e.g., the ones
in figs 11 and 12.
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Fig.11 - Mandelbrot and Julia 2D sets generated as wholes by POV-Ray 3.7
(functions “Mandel” and “Julia”)

Fig.12 - Mandelbrot and Julia “flat” landscapes sets generated as wholes by POV-Ray 3.7
(functions “Mandel” and “Julia”)

POV-Ray 3.7 codes to generate fig 11 and 12

//=========================================

// Mandelbrot set 2D and 3D landscape

// generation (POV-Ray 3.7 Mandel function)

//=========================================

background { color rgb <0.0,0.0,0.0> } // set black background color

camera { // set view point (camera) location

perspective

location < 0, 0, -3.5 >

// location < 1.0, 2.0, -2.85> // alternative camera location for landscape

right x * 1

up y * 3/4

angle 60

look_at < 0.0, 0.0, 0.0>

}

light_source { // set point light sources location
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< 0.0, 10, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

box {<-2, -2, 0>, <2, 2, 0.1> // set image box area

pigment {

mandel 30

exponent 2

interior 1, .5

exterior 1,.8

color_map {

[0 rgb 0]

[0.05 rgb x]

[0.3 rgb x+y]

[1 rgb 0]

[1 rgb 0]

}

}

// rotate <90,-70,-10> // alternative rotation for landscape

// translate < 0.5,0.7,0> // alternative translation for lansdscape

translate < 0.5,0.0,0> // front 2D image

}

//==========================================

// Julia set 2D and 3D landscape

// generation (POV-Ray 3.7 Julia function)

//==========================================

background { color rgb <0.0,0.0,0.0> } // set black background color

camera { // set view point (camera) location

perspective

location < 1.3, 0, -3>

// location< 1.0, 2.0, -3> //alternative camera location for landscape

right x * 1

up y * 3/4

angle 60

look_at < 0.0, 0.0, 0.0>

}

light_source { // set point light sources location

< 0.0, 10, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

box {<-2, -2, 0>, <2, 2, 0.1> // set image box area

pigment {

julia < -0.7454294, 0.0 >, 30

interior 1, 1

color_map {

[0 rgb 0]

[0.07 rgb x]

[0.5 rgb x+y]

[1 rgb .6]

[1 rgb 0]

}

}

rotate < 1.8, -28, 0 >

// rotate <90,30,0> // alternative rotation for landscape

translate < .1, 0, 0 >}
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4.2.2 POV-Ray 3.7 “height field” function rendering

A very performant function implemented in POV-Ray 3.7 to render landscapes, and in par-
ticular fractal scenes as wholes, is provided by the “height field” function. This latter reads
preformed 2D images and assigns a different elevation to each gray level or color level en-
countered in the original 2D picture. Special rendering effects may be suitably added in the
program list in order to obtain beautiful pictures.

Here are some examples of Mandelbrot landscapes.

Fig.13 - Mandelbrot landscapes generated as a whole by POV-Ray 3.7 “height field” function
starting from the 2D color and gray level images on the left

POV-Ray 3.7 code to generate fig 13, 14 and 15

//=================================================

// Mandelbrot (Julia, Newton’s method) landscape

// generation (POV-Ray 3.7 height field function)

//=================================================

#include "colors.inc" // Standard Color definitions

#include "textures.inc" // Standard Texture definitions

camera{ // set view point (camera) location

location <2.6, 15.0, -26>
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look_at 0.0

angle 35

}

background { color red 0.2 green 0.6 blue 0.8} // Set a color of the background (sky)

light_source // create a regular point light source

{

0*x // light’s position (translated below)

color Orange // light’s color

translate <1000, 1000, -100>

}

light_source // Area light source (creates soft shadows)

{

0*x // light’s position (translated below)

color Bronze // light’s color

area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

4, 4 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

translate <40, 80, -40> // <x y z> position of light

}

height_field { // heigh field rendering

png "PATH/Mandel2D.png" // alternative "PATH/Julia2D.png" "PATH/Mandel2D.png"

smooth

pigment {agate

agate_turb 1.0

}

finish { ambient 0.2 specular 0.5 reflection 0.2 }

translate <-.52, 1.5, -.7>

rotate < -5, 0, 0 >

scale <17, 1.75, 17>

}

The figs 14 and 15 are examples of Julia and Newton’s method landscapes obtained by
the “height field” function.

For our purposes intended to evidence the constructive process of the structures step
by step, the representation of the 3D shapes is not enough and a point by point method is
required, similar to what we have seen implementing Python 3 programs. We will see in the
next two sections how to build fractal landscapes point by point following both a sequentiallt
ordered process and a random process. We remember that the intent of all the present
exposition of our book, is that of showing that a random procedure – which is genuinely
governed by chance – may be able to reach and ordered structure system as an attractor, if
it is governed by a suitable law (algorithm).
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Fig.14 - Julia landscapes generated as a whole by POV-Ray 3.7 “height field” function
starting from the 2D color level images on the left

Fig.15 - Newton’s method landscapes generated as a whole by POV-Ray 3.7 “height field” function
starting from the 2D gray level images on the left (seahorse Julia set)
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4.2.3 Sequential rendering

In the present subsection we present an ordered sequential procedure, implemented by POV-
Ray 3.7, to construct simple fractal landscapes comparable with the examples presented in
the previous paragraphs obtained employing different methods.

Fig.16 - Mandelbrot mountain landscape generated sequentially by small spheres (POV-Ray 3.7)

VIEW ANIMATION (requires internet connection)

POV-Ray 3.7 code to generate fig 16

//==========================================

// Sequential Mandelbrot mountain landscape

// generation (POV-Ray 3.7 small spheres)

//==========================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigments

#include "metals.inc" // Metal pigments

global_settings {assumed_gamma 1.0} // set display gamma

#declare Th = -40; // set rotation angles

#declare Ph = 10;

background { color red 0.2 green 0.6 blue 0.8 }

plane { < 0.0, 1, 0.0 >, 1 // normal vector to palne | -1 is the height of the floor

http://albertostrumia.it/sites/default/files/Animations/MandLPOVSQ.m4v
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pigment { color .3*Green }

normal { bumps 0.5 scale 0.6} // grass effect

rotate < 0, Th, Ph >}

camera { // set view point (camera) location

location <0, 100, -220>

look_at <20, 10, 0>

}

light_source // create a regular point light source

{

0*x // light’s position (translated below)

color Gold // light’s color

translate <1000, 1000, -100>

}

light_source // Area light source (creates soft shadows)

{

0*x // light’s position (translated below)

color Silver // light’s color

// <widthVector> <heightVector> nLightsWide mLightsHigh

area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

4, 4 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

translate <40, 80, -40> // <x y z> position of light

}

#declare R = 0.5; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare n = 200; // set number of pixels per area side

#declare N = 20; // set number of cycles

// replace -n, n by -n*clock, n*clock for animation

#for (p, -n, n, 1) // partial values 0, n/4, n/2 //

#for (q, -n, n, 1)

#declare X = 0;

#declare Y = 0;

#for (k,0,N)

#declare XX = X*X - Y*Y + p*L/n - 1;

#declare YY = 2*X*Y + q*L/n;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y < R+.01)

sphere {

< p, k, q >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color rgb < abs(sin(.5*pi*k/N)), 0.3, abs(cos(.5*pi*(k/N))) > }

}

finish { ambient rgb <0.3,0.1,0.2>

diffuse .3

reflection .3

specular 1

}

rotate < 0, Th, Ph >
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translate < 0, 0, 0 > }

#end // end if

#end // end for k

#end // end for q

#end // end for p

A second example, as usual, is offered by a sequence of steps of a process building a Julia
set.

Fig.17 - Julia (c = −0.745429) mountain landscape generated sequentially by small spheres (POV-Ray 3.7)

VIEW ANIMATION (requires internet connection)

POV-Ray 3.7 code to generate fig 17 and 18

//==========================================

// Sequential Julia mountain landscape

// generation (POV-Ray 3.7 small spheres)

//==========================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigments

#include "metals.inc" // Metal pigments

http://albertostrumia.it/sites/default/files/Animations/JuliaLPOVSQ.m4v
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Fig.18 - Julia (c = 0.27334) mountain landscape generated sequentially by small spheres (POV-Ray 3.7)

VIEW ANIMATION (requires internet connection)

global_settings {assumed_gamma 1.0}

#declare Th = -50; // set rotation angles

#declare Ph = 10;

background { color red 0.2 green 0.6 blue 0.8 }

plane { < 0.0, 10, 0.0 >, 1 // normal vector to palne | -1 is the height of the floor

pigment { color .3*Green }

normal { bumps 0.5 scale 0.6} // grass effect

rotate < 0, Th, Ph >}

camera {{ // set view point (camera) location

location <0, 120, -200>

look_at <-35, 1, 0>

}

light_source // create a regular point light source

{

0*x // light’s position (translated below)

color Gold // light’s color

translate <1000, 1000, -100>

}

light_source // Area light source (creates soft shadows)

{

0*x // light’s position (translated below)

color Silver // light’s color

// <widthVector> <heightVector> nLightsWide mLightsHigh

http://albertostrumia.it/sites/default/files/Animations/Julia1LPOVSQ.m4v
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area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

4, 4 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

translate <40, 80, -40> // <x y z> position of light

}

#declare R = 0.13; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

// set parameter c values

#declare Cx = -0.7454294; // alternative value c = 0.27334

#declare Cy = 0;

#declare n = 200; // set number of pixels per area side

#declare N = 40; // set number of cycles

// replace -n, n by -n*clock, n*clock for animation

#for (p, -n, n, 1) // partial values -n/4, 0, n/4

#declare IncX = p*L/n;

#for (q, -n, n, 1)

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#for (k,0,N)

#declare XX = X*X - Y*Y + Cx ;

#declare YY = 2*X*Y + Cy;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y < R+.002)

sphere {

< p, k-3, q >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color rgb < abs(sin(.5*pi*k/N)), 0.3, abs(cos(pi*(k/N))) > }

}

finish { ambient rgb <0.3,0.1,0.2>

diffuse .3

reflection .3

specular 1

}

rotate < 0, Th, Ph >

translate < 0, 0, 0 > }

#end // end if

#end // end for k

#end // end for q

#end // end for p

A Newton’s method example of similar landscape is presented in fig. 19 and the related
code is also provided.
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Fig.19 - Newton’s method fractal mountain landscape generated sequentially by small spheres (POV-Ray 3.7)

VIEW ANIMATION (requires internet connection)

POV-Ray 3.7 code to generate fig 19

//====================================================

// Sequential Newton’s method set mountain landscape

// generation (POV-Ray 3.7 small spheres)

//===================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigments

#include "metals.inc" // Metal pigments

global_settings {assumed_gamma 1.0} // set display gamma

#declare Th = -60; // set rotation angles

#declare Ph = 0;

background { color red 0.2 green 0.6 blue 0.8 }

plane { < 0.0, 10, 0.0 >, 1 // normal vector to palne | -1 is the height of the floor

pigment { color .3*Green }

normal { bumps 0.5 scale 0.6} // grass effect

rotate < 0, Th, Ph >}

camera {{ // set view point (camera) location

location < 0, 120, -180>

look_at < 0, -20, 0>

angle 90}

http://albertostrumia.it/sites/default/files/Animations/NewtonLPOVSQ.m4v
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light_source // create a regular point light source

{

0*x // light’s position (translated below)

color Gold // light’s color

translate <1000, 1000, -100>

}

light_source // Area light source (creates soft shadows)

{

0*x // light’s position (translated below)

color Silver // light’s color

// <widthVector> <heightVector> nLightsWide mLightsHigh

area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

4, 4 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

translate <40, 80, -40> // <x y z> position of light

}

#declare R = 0.9; // set radius value

#declare L = 1.0; // set square area side

#declare X = 0.01; // set co-ordinate x initial value

#declare Y = 0.01; // set co-ordinate y initial value

#declare Cx = 0.0; // set x shift

#declare Cy = 0.0; // set y shtift

#declare n = 200; // set number of pixels per area side

#declare N = 20; // set number of cycles

// replace -n, n by -n*clock, n*clock for animation

#for (p, -n, n/4, 1) // partial values -n/4, 0, n/4

#declare IncX = p*L/n;

#for (q, -n, n, 1)

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#for (k,0,N)

#declare XX = 3*X/4 - X*(X*X - 3*Y*Y)/((X*X + Y*Y)*(X*X + Y*Y)*

(X*X + Y*Y)*4);

#declare YY = 3*Y/4 - Y*(Y*Y - 3*X*X)/((X*X + Y*Y)*(X*X + Y*Y)*

(X*X + Y*Y)*4);

#declare X = XX;

#declare Y = YY;

#if ((X - Cx)*(X-Cx) + (Y - Cy)*(Y - Cy) < R)

sphere {

< p, k, q >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color rgb < abs(sin(.5*pi*k/N)), 0.3,

abs(cos(pi*(k/N))) > }

}

finish { ambient rgb <0.3,0.1,0.2>

diffuse .3

reflection .3

specular 1

}

rotate < 0, Th, Ph >

translate < 0, 0, 0 > }
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#end // end if

#end // end for k

#end // end for q

#end // end for p

4.2.4 Random rendering

In this subsection the same landscapes are obtained starting from random initial conditions,
applying the same algorithm (law) to each of them. Note how order arises step after step.

Fig.20 - Mandelbrot mountain landscape built randomly by small spheres (POV-Ray 3.7)

VIEW ANIMATION (requires internet connection)

In fig. 20 a picture of a random Mandelbrot landscape is shown. One can recognize how
the shape of the resulting structure refines as the number of points increases.

POV-Ray 3.7 code to generate fig 20

//==========================================

// Random Mandelbrot mountain landscape

// generation (POV-Ray 3.7 small spheres)

//==========================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigments

http://albertostrumia.it/sites/default/files/Animations/MandLPOVRD.m4v
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#include "metals.inc" // Metal pigments

global_settings {assumed_gamma 1.0} // set display gamma

#declare Th = -40; // set rotation angles

#declare Ph = 10;

background { color red 0.2 green 0.6 blue 0.8 }

plane { < 0.0, 1, 0.0 >, 1 // normal vector to palne | -1 is the height of the floor

pigment { color .3*Green }

normal { bumps 0.5 scale 0.6} // grass effect

rotate < 0, Th, Ph >

}

camera {{ // set view point (camera) location

location <0, 100, -220>

look_at <20, 10, 0>

}

light_source // create a regular point light source

{

0*x // light’s position (translated below)

color Gold // light’s color

translate <1000, 1000, -100>

}

light_source // Area light source (creates soft shadows)

{

0*x // light’s position (translated below)

color Silver // light’s color

// <widthVector> <heightVector> nLightsWide mLightsHigh

area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

4, 4 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

translate <40, 80, -40> // <x y z> position of light

}

#declare R = 0.5; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare n = 400; // alternative value n = 200 // set number of pixels per area side

#declare N = 20; // set number of cycles

#declare K = array[n+1][n+1]; // image point matrix

#for (p, 0, n, 1) // partial values 0, n/4, n/2

#for (q, 0, n, 1)

#declare X = 0;

#declare Y = 0;

#declare K[p][q] = 0;

#for (k,0,N)

#declare XX = X*X - Y*Y + 2*p*L/n - L - 1;

#declare YY = 2*X*Y + 2*q*L/n - L;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y < R+.01)

#declare K[p][q] = k;
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#end // end if

#end // end for k

#end // end for q

#end // end for p

#declare Rnd_1 = seed (1153); // random number generators

#declare Rnd_2 = seed (553) ;

// replace n*n by n*n*clock for animation

#for(j,0,n*n) // partial values n*n/64, n*n/16, n*n/4

#declare p = int(n*rand(Rnd_1));

#declare q = int(n*rand(Rnd_2));

#for(i,0,K[p][q])

sphere {

< p-n/2, i, q-n/2 >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color rgb < abs(sin(.5*pi*i/N)), 0.3,

abs(cos(.5*pi*i/N)) > }

}

finish { ambient rgb <0.3,0.1,0.2>

diffuse .3

reflection .3

specular 1

}

rotate < 0, Th, Ph >

translate < 0, 0, 0 > }

#end // end for i

#end // end for j

While fig. 21 shows a picture of a random Julia landscape.
Here is the related POV-Ray 3.7 code.

POV-Ray 3.7 code to generate fig 21

//==========================================

// Random Julia mountain landscape

// generation (POV-Ray 3.7 small spheres)

//==========================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigments

#include "metals.inc" // Metal pigments

global_settings {assumed_gamma 1.0} // set display gamma

#declare Th = -50; // set rotation angles

#declare Ph = 10;

// Set a color of the background (sky)

background { color red 0.2 green 0.6 blue 0.8 }
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Fig.21 - Julia mountain landscape generated radndomly by small spheres (POV-Ray 3.7)

VIEW ANIMATION (requires internet connection)

plane { < 0.0, 1, 0.0 >, 1 // normal vector to palne | -1 is the height of the floor

pigment { color .3*Green }

normal { bumps 0.5 scale 0.6} // grass effect

rotate < 0, Th, Ph >}

camera {{ // set view point (camera) location

location <0, 120, -200>

look_at <-35, 1, 0>

}

light_source // create a regular point light source

{

0*x // light’s position (translated below)

color Gold // light’s color

translate <1000, 1000, -100>

}

light_source // Area light source (creates soft shadows)

{

0*x // light’s position (translated below)

color Silver // light’s color

// <widthVector> <heightVector> nLightsWide mLightsHigh

area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

4, 4 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

http://albertostrumia.it/sites/default/files/Animations/JuliaLPOVRD.m4v
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translate <40, 80, -40> // <x y z> position of light

}

#declare R = 0.13; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare Cx = -0.7454294; // set parameter c values

#declare Cy = 0;

#declare n = 400; // alternative value n = 300 // set number of pixels per area side

#declare N = 40; // set number of cycles

#declare K = array[n+1][n+1]; // image point matrix

// replace n by n*clock for animation

#for (p, 0, n, 1) // partial values 0, n/4, n/2

#declare IncX = -L + 2*p*L/n;

#for (q, 0, n, 1)

#declare IncY = -L + 2*q*L/n;

#declare X = IncX;

#declare Y = IncY;

#declare K[p][q] = 0;

#for (k,0,N)

#declare XX = X*X - Y*Y + Cx;

#declare YY = 2*X*Y + Cy;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y < R+.002)

#declare K[p][q] = k;

#end // end if

#end // end for k

#end // end for q

#end // end for p

#declare Rnd_1 = seed (1153); // random numbers generator

#declare Rnd_2 = seed (553);

// replace n*n by n*n*clock for animation

#for(j,0,n*n) // partial values n*n/64, n*n/16, n*n/4

#declare p = int(n*rand(Rnd_1));

#declare q = int(n*rand(Rnd_2));

#for(i,0,K[p][q])

sphere {

< p-n/2, i, q-n/2 >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color rgb < abs(sin(.5*pi*i/N)), 0.3, abs(cos(.5*pi*i/N)) > }

}

finish { ambient rgb <0.3,0.1,0.2>

diffuse .3

reflection .3

specular 1

}

rotate < 0, Th, Ph >
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translate < 0, 0, 0 > }

#end // end for i

#end // end for j

And four steps of the Newton’s method landscape random process are illustrated inf
fig. 22.

Fig.22 - Newton’s method mountain landscape generated randomly by small spheres (POV-Ray 3.7)

VIEW ANIMATION (requires internet connection)

POV-Ray 3.7 code to generate fig 22

//===============================================

// Random Newton’s method mountain landscape

// generation (POV-Ray 3.7 small spheres)

//===============================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigments

#include "metals.inc" // Metal pigments

global_settings {assumed_gamma 1.0} // set display gamma

http://albertostrumia.it/sites/default/files/Animations/NewtonLPOVRD.m4v
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#declare Th = -60; // set rotation angles

#declare Ph = 0;

// Set a color of the background (sky)

background { color red 0.2 green 0.6 blue 0.8 }

plane { < 0.0, 10, 0.0 >, 1 // normal vector to palne | -1 is the height of the floor

pigment { color .3*Green }

normal { bumps 0.5 scale 0.6} // grass effect

rotate < 0, Th, Ph >}

camera {{ // set view point (camera) location

location < 0, 120, -180>

look_at < 0, -20, 0>

angle 90}

light_source // create a regular point light source

{

0*x // light’s position (translated below)

color Gold // light’s color

translate <1000, 1000, -100>

}

light_source // Area light source (creates soft shadows)

{

0*x // light’s position (translated below)

color Silver // light’s color

// <widthVector> <heightVector> nLightsWide mLightsHigh

area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

4, 4 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

translate <40, 80, -40> // <x y z> position of light

}

#declare R = 0.9; // set radius value

#declare L = 1.0; // set square area side

#declare X = 0.01; // set co-ordinate x initial value

#declare Y = 0.01; // set co-ordinate y initial value

#declare Cx = 0.0; // set x shift

#declare Cy = 0.0; // set y shift

#declare n = 400; // alternative value n = 300 // set number of pixels per area side

#declare N = 20; // set number of cycles

#declare K = array[n+1][n+1]; // image point matrix

#for (p, 0, n, 1) // partial values -n/4, 0, n/4

#declare IncX = -L + 2*p*L/n;

#for (q, 0, n, 1)

#declare IncY = -L + 2*q*L/n;

#declare X = IncX;

#declare Y = IncY;

#declare K[p][q] = 0;

#for (k,0,N)

#declare XX = 3*X/4 - X*(X*X - 3*Y*Y)/((X*X + Y*Y)*(X*X + Y*Y)*

(X*X + Y*Y)*4);

#declare YY = 3*Y/4 - Y*(Y*Y - 3*X*X)/((X*X + Y*Y)*(X*X + Y*Y)*

(X*X + Y*Y)*4);

#declare X = XX;



#declare Y = YY;

#if ((X - Cx)*(X-Cx) + (Y - Cy)*(Y - Cy) < R)

#declare K[p][q] = k;

#end // end if

#end // end for k

#end // end for q

#end // end for p

#declare Rnd_1 = seed (1153); // random numbers generator

#declare Rnd_2 = seed (553);

// replace n*n by n*n*clock for animation

#for(j,0,n*n) // partial values n*n/64, n*n/16, n*n/4

#declare p = int(n*rand(Rnd_1));

#declare q = int(n*rand(Rnd_2));

#for(i,0,K[p][q])

sphere {

< p-n/2, i, q-n/2 >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color rgb < abs(sin(.5*pi*i/N)), 0.3,

abs(cos(.5*pi*(i/N))) > }

}

finish { ambient rgb <0.3,0.1,0.2>

diffuse .3

reflection .3

specular 1

}

rotate < 0, Th, Ph >

translate < 0, 0, 0 > }

#end // end for i

#end // end for j
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Chapter 5

Three-dimensional fractals with
cylindrical symmetry
Rendering structures either as wholes or by sequential or by
random processes

Landscape rendering, we saw in the previous chapter, is not the only way to extend 2D
fractals to a 3D space. In fact a proper 3D fractal body should be generated in such a way
that its boundary is a fractal surface and not only a curve on a plane with segments adjoined
along the third dimension of space. But if one attempts to extend to 3D a complex fractal as
a Mandelbrot, or a Julia or Newton’s method set one encounters soon at least three serious
problems.

1. A first, not irrelevant, problem is related to the computation time which increases now
according to power 3 and no longer to power 2. So calculations required to build some
plots may take even more than 24 hours to be developed.

2. A second problem arises because complex numbers possess only two components (i.e., a
real and an imaginary part), while in three space dimension we need three components
(co-ordinates) in order to plot a point.

3. A third problem, which involves both complex and real fractals, arises because, in three
dimensions, the level curves (painted in a same color) become fractal level surfaces, one
including and hiding the others. So the fractal structure may be hidden by external
non-fractalized surfaces.

The first problem is successfully solved when a 2D fractal, like e.g., Mandelbrot and some
of the Julia sets exhibit a symmetry axis around which it can be revolved to generate a body
characterized by cylindrical symmetry. It must be emphasized that, in this case, the degree
of complexity of the fractal structure is not increased respect to the two dimensional fractal,
since no further control parameter is introduced accompanying the third dimension.

105
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The second problem, when no symmetry axis exists for the 2D fractal, is usually solved
recurring to quaternions, which generalize complex numbers to more dimensions. Since the
simplest kind of quaternions exhibit four components, only three of them may be used to
represent a point within the 3D space. So the fourth component of quaternions can be set
to a fixed value, as e.g., zero. Now the introduction of a new parameter accompanying the
third space dimension actually involves a new degree of freedom which increases the degree
of complexity of the fractal.

The third problem may be solved imposing suitable maximum and minimum threshold
values to the recursive function characterizing the fractal, so fixing a visible fractal boundary
shell to the body and avoiding to plot external points.

In the present chapter we will examine 3D fractals with cylindrical symmetry, obtained
revolving 2D Mandelbrot, Julia and Newton’s method sets, introducing also threshold values
to improve the calculation speed. While in the next chapter we will examine some generalized
Mandelbrot, Julia sets generated employing quaternions and hypercomplex numbers.

We will use, in both chapters, only POV-Ray 3.7 for better rendering effects, constructing
the images point by point in order to be able to control the constructive process at each step.

5.1 POV-Ray 3.7 3D fractal structures with cylindrical sym-
metry as wholes

As a first step we need to start building two dimensional fractals endowed with a symmetry
axis. And as a second step we will revolve each 2D set around its symmetry axis in order to
obtain a 3D fractal body characterized by a cylindrical symmetry.

5.1.1 Generalized Mandelbrot set with cylindrical symmetry

The 2D starting Mandelbrot set

The ordinary 2D Mandelbrot set which provides the basis for the process yielding to the
desired 3D plot could be, e.g., the one represented in the next fig. 1.

We point out that in order to build 3D bodies it is not suitable to involve color map very
rich of different colors, since now we are not intended to mark any escape velocity. Rather
we are interested to metal or glass material rendering better effects.

POV-Ray 3.7 code to generate fig. 1

//=================================

// Mandelbrot 2D set as a whole

// (POV-Ray point by point plot)

//=================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <0.0,0.0,0.0> } // set black background
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Fig.1 - POV 3.7 two dimensional Mandelbrot set as a whole

camera { // set view point (camera) location

location <0, 0, -200>

look_at <1, 0, 0>

angle 80

}

light_source { // set point light sources location

< -2.0, 0, -5>

rgb <1.000000, 1.000000, 1.000000> * 10.0 // set white light color and intensity

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare n = 200; // set number of pixels per area side

#declare N = 50; // set number of cycles

#for (p, -n, n, 1)

#for (q, -n, n, 1)

#declare X = 0;

#declare Y = 0;

#for (k,0,N)

#declare XX = X*X - Y*Y + p*L/n - 1;

#declare YY = 2*X*Y + q*L/n;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y < R+.01)

sphere {

< p, q, 0 >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Yellow

}

}
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finish { ambient rgb <0.3,0.1,0.1>

diffuse .1

reflection .1

specular 1

}

}

#end // end if

#end // end for k

#end // end for q

#end // end for p

Moreover, for faster rendering, it will be suitable to impose both a maximum and a
minimum value threshold to the recursive function X2 + Y 2 in the previous program.

Fig.2 - POV 3.7 two dimensional carved Mandelbrot set as a whole

The minimum threshold adds also the beautiful effect of carving the interior structure of
the Mandelbrot set which will be especially relevant in the 3D rendering of open sections of
the fractal bodies.

POV-Ray 3.7 code to generate fig. 2

//======================================

// Mandelbrot 2D carved set as a whole

// (POV-Ray point by point plot)

//======================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <0.0,0.0,0.0> } // set black background

camera { // set view point (camera) location
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location <0, 0, -200>

look_at <1, 0, 0>

angle 80

}

light_source { // set point light sources location

< -2.0, 0, -5>

rgb <1.000000, 1.000000, 1.000000> * 10.0 // set white light color and intensity

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare n = 200; // set number of pixels per area side

#declare N = 50; // alternative N = 100; // set number of cycles

#for (p, -n, n, 1)

#for (q, -n, n, 1)

#declare X = 0;

#declare Y = 0;

#for (k,0,N)

#declare XX = X*X - Y*Y + p*L/n - 1;

#declare YY = 2*X*Y + q*L/n;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.01)

sphere {

< p, q, 0 >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Yellow

}

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .1

reflection .1

specular 1

}

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

The 3D generalized Mandelbrot set

Revolving the carved 2D set one may obtain, finally, a 3D body endowed of cylindrical
symmetry (see fig. 3).

Manifestly adding a third dimension sensibly hides the fractalization of the boundary
surfaces respect to what appears in two dimensions. The result will be of more impact if the
rotation of the 2D figure is not continuous, but discrete, so that some insight into the interior
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of the fractal body becomes more evident (see fig. 4), or if one observes an animation of the
continuous revolution process.

Fig.3 - POV 3.7 3D Mandelbrot set with cylindrical symmetry

VIEW ANIMATION (requires internet connection)

POV-Ray 3.7 code to generate fig. 3 and 4

//===================================

// Mandelbrot 3D set as a whole

// (POV-Ray cylindrical symmetry)

//===================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -3.0, 10, -5>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

light_source {

< 5.0, 10, -10>

http://albertostrumia.it/sites/default/files/Animations/MandCylindFullRot.m4v
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Fig.4 - POV 3.7 3D Mandelbrot set with cylindrical symmetry
(two different glass renderings)

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 10; // set number of cycles

#declare Nr = 100; // alternative Nr = 20; // set number of sections

#declare Th = -45;

#declare Ph = 30;

union{ #for (p, -n, n, 1)

#for (q, -n, n, 1)

#declare X = 0;

#declare Y = 0;

#for (i,1,N)

#declare XX = X*X - Y*Y + p*L/n - 1;

#declare YY = 2*X*Y + q*L/n;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.01)

#for (k,0,Nr) // replace Nr by Nr*clock for animation

sphere {

< p, q*cos(3.14*k/Nr), q*sin(3.14*k/Nr) >, 1

texture {

pigment { color Col_Glass_Yellow }

// alternative pigment { color Col_Glass_Old }

}
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finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 }

}

#end // end if

#end // end if

#end // end for k

#end // end for i

#end // end for q

#end // end for p

rotate < 0, Th, Ph >}

An open view of the same 3D Mandelbrot set allows to examine also its internal structure
in detail. In fig. 5 some interesting glass color rendering pictures are presented.

POV-Ray 3.7 code to generate fig. 5

//==============================================

// Mandelbrot 3D set as a whole

// (POV-Ray cylindrical symmetry open section)

//==============================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -3.0, 10, -5>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

light_source {

< 5.0, 10, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 10; // set number of cycles

#declare Nr = 40; // set number of sections

#declare Th = -45;

#declare Ph = 30;
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Fig.5 - POV 3.7 3D Mandelbrot set with cylindrical symmetry open section
(four different glass renderings)
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union{ #for (p, -n, n, 1)

#for (q, -n, n, 1)

#declare X = 0;

#declare Y = 0;

#for (i,1,N)

#declare XX = X*X - Y*Y + p*L/n - 1;

#declare YY = 2*X*Y + q*L/n;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.01)

#for (k,1,Nr)

sphere {

< p, abs(q)*cos(3.14*k/Nr), abs(q)*sin(3.14*k/Nr) >, 1

texture {

pigment { color P_Copper4 }

}

finish { ambient rgb <0.1,0.1,0.1>

diffuse .3

reflection .3

specular 1 }

}

#end // end if

#end // end if

#end // end for k

#end // end for i

#end // end for q

#end // end for p

rotate < 0, Th, Ph >}

5.1.2 Generalized Julia set with cylindrical symmetry

The 2D starting Julia set

The same constructive procedure can be profitably applied to the generation of a 3D gener-
alized Julia set with cylindrical symmetry. As before we start from a 2D Julia set.

POV-Ray 3.7 code to generate fig. 6

//============================================

// Julia 2D set as a whole (full and carved)

// (POV-Ray point by point plot)

//============================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <0.0,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <0, -50, -300>

look_at <-5, 0, 0>
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Fig.6 - POV 3.7 two dimensional Julia set (c = −0.7454294) as a whole (full and carved)

}

light_source { // set point light sources location

< -2.0, -1, -5>

rgb <1.000000, 1.000000, 1.000000> * 10.0 // set white light color and intensity

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare n = 200; // set number of pixels per area side

#declare N = 30; // set number of cycles

#declare Cx = -0.7454294; // set parameter c values

#declare Cy = 0;

#for (p, -n, n, 1)

#declare IncX = p*L/n;

#for (q, -n, n, 1)

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#for (k,0,N)

#declare XX = X*X - Y*Y + Cx;

#declare YY = 2*X*Y + Cy;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R) // comment for full set

#if (X*X+Y*Y < R+.002)

sphere {

< p, q, 0 >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Yellow
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}

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .1

reflection .1

specular 1

}

}

#end // end if // comment for full set

#end // end if

#end // end for k

#end // end for q

#end // end for p

The 3D generalized Julia set

Revolving the carved 2D Julia set we generate a 3D set with cylindrical symmetry.

Fig.7 - POV 3.7 3D Julia set with cylindrical symmetry (c = −0.7454294)

VIEW ANIMATION (requires internet connection)

Also for the Julia set a better rendering effect arises when discrete steps replace continuous
rotation, or viewing an animation of the revolution process.

The insight into the interior structure of the body improves the quality of the picture.

POV-Ray 3.7 code to generate fig. 7 and 8

http://albertostrumia.it/sites/default/files/Animations/JuliaCylindFullRot.m4v
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Fig.8 - POV 3.7 3D Julia set (c = −0.7454294) with cylindrical symmetry
(two different glass renderings)

//=================================

// Julia 3D set as a whole

// (POV-Ray cylindrical symmetry)

//=================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 30; // set number of cycles

#declare Nr = 100; // alternative Nr = 25; // set number of sections

#declare Th = -5;
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#declare Ph = 20;

#declare Cx = -0.7454294; // set parameter c values

#declare Cy = 0;

union{ #for (p, -n, n, 1)

#declare IncX = p*L/n;

#for (q, -n, n, 1)

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#for (i,1,N)

#declare XX = X*X - Y*Y + Cx;

#declare YY = 2*X*Y + Cy;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.005)

#for (k,0,Nr) // replace n by n*clock for animation

sphere {

< p, q*cos(3.14*k/Nr), q*sin(3.14*k/Nr) >, 1

// hollow

// radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 }

}

#end // end if

#end // end if

#end // end for k

#end // end for i

#end // end for q

#end // end for p

rotate < 0, Th, Ph >}

The open sections of the Julia set with c = −0.7454294 offer also very nice images (see
fig. 9).

POV-Ray 3.7 code to generate fig. 9

//=======================================

// Julia 3D set as a whole

// (POV-Ray open section)

//=======================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>
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Fig.9 - POV 3.7 3D Julia set with cylindrical symmetry open section
(c = −0.7454294 – four different glass renderings)
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look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -3.0, 10, -5>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

light_source {

< 5.0, 10, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 30; // set number of cycles

#declare Nr = 25; // set number of sections

#declare Th = -45;

#declare Ph = 30;

#declare Cx = -0.7454294; // set parameter c values

#declare Cy = 0;

union{ #for (p, -n, n, 1)

#declare IncX = p*L/n;

#for (q, -n, n, 1)

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#for (i,1,N)

#declare XX = X*X - Y*Y + Cx;

#declare YY = 2*X*Y + Cy;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.002)

#for (k,0,Nr)

sphere {

< p, abs(q)*cos(3.14*k/Nr), abs(q)*sin(3.14*k/Nr) >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Ruby }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 }

}

#end // end if

#end // end if

#end // end for k

#end // end for i

#end // end for q

#end // end for p

rotate < 0, Th, Ph >}
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5.1.3 Generalized Newton’s method set with cylindrical symmetry

The 2D starting Newton’s method set

Differently respect to Mandelbrot and Julia sets which fill bounded regions of space, the
Newton’s method sets extend towards infinity. Therefore we need consider only a portion of
a 2D set to be revolved in order to construct a 3D body.

As an example we will examine a part of a Newton’s method 2D set related to the
polynomial f(z) = z4 + 1.

Fig.10 - POV 3.7 two dimensional Newton’s method set [f(z) = z4 + 1] as a whole (full and carved)

POV-Ray 3.7 code to generate fig. 10

//=======================================================

// Newton’s method 2D set as a whole (full and carved)

// (POV-Ray point by point plot)

//=======================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <0.0,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <0, -50, -300>

look_at <-5, 0, 0>

angle 90

}

light_source { // set point light sources location

< 0.0, 0, -10>
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rgb <1.000000, 1.000000, 1.000000> * 10.0 // set white light color and intensity

}

#declare R = 0.9; // set radius value

#declare L = 1.4; // set square area side

#declare X = 0.01; // set co-ordinate x initial value

#declare Y = 0.01; // set co-ordinate y initial value

#declare n = 200; // set number of pixels per area side

#declare N = 10; // set number of cycles

#for (p, -n, n, 1)

#declare IncX = p*L/n;

#for (q, -n, n, 1)

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#for (k,0,N)

#declare XX = 3*X/4 - X*(X*X - 3*Y*Y)/(X*X + Y*Y)/(X*X + Y*Y)/

(X*X + Y*Y)/4;

#declare YY = 3*Y/4 - Y*(Y*Y - 3*X*X)/(X*X + Y*Y)/(X*X + Y*Y)/

(X*X + Y*Y)/4;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R) // comment for full set

#if (X*X+Y*Y < R+.05)

sphere {

< p, q, 0 >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Yellow

}}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .1

reflection .1

specular 1

}}

#end // end if // comment for full set

#end // end if

#end // end for k

#end // end for q

#end // end for p

The 3D generalized Newton’s method set

Revolving the carved 2D Newton’s method set we generate a 3D set with cylindrical symmetry.

POV-Ray 3.7 code to generate fig. 11 and 12

//=====================================

// Newton’s method 3D set as a whole

// (POV-Ray cylindrical symmetry)

//=====================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect
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Fig.11 - POV 3.7 3D Newton’s method set with cylindrical symmetry [f(z) = z4 + 1]

VIEW ANIMATION (requires internet connection)

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <0.0,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -400>

look_at <-35, 1, 0>

angle 100

}

light_source // set area light sources location

{

0*x // light’s position (translated below)

color Silver // light’s color

// <widthVector> <heightVector> nLightsWide mLightsHigh

area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

4, 4 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

translate <40, 80, -40> // <x y z> position of light

}

#declare R = 0.9; // set radius value

#declare L = 1.10; // set square area side

#declare X = 0.01; // set co-ordinate x initial value

#declare Y = 0.01; // set co-ordinate y initial value

#declare n = 200; // set number of pixels per area side

#declare N = 10; // set number of cycles

#declare Nr = 100; // alternative Nr = 25; // set number of sections

#declare Th = -45;

#declare Ph = 30;

http://albertostrumia.it/sites/default/files/Animations/NewtonCylindFullRot.m4v
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#for (p, -n, n, 1)

#declare IncX = p*L/n;

#for (q, -n, n, 1)

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#for (i,1,N)

#declare XX = 3*X/4 - X*(X*X - 3*Y*Y)/(X*X + Y*Y)/(X*X + Y*Y)/

(X*X + Y*Y)/4;

#declare YY = 3*Y/4 - Y*(Y*Y - 3*X*X)/(X*X + Y*Y)/(X*X + Y*Y)/

(X*X + Y*Y)/4;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.05)

#for (k,0,Nr) // replace Nr by Nr*clock for animation

sphere {

< p, q*cos(3.14*k/Nr), q*sin(3.14*k/Nr) >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Yellow

}

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1

}

}

#end // end if

#end // end if

#end // end for k

#end // end for i

#end // end for q

#end // end for p

rotate < 0, Th, Ph >

translate <50,20,0> }

Also for the Newton’s method set a better rendering effect arises when discrete steps
replace continuous rotation or while observing an animation of the revolution process. The
insight into the interior structure of the body improves the quality of the picture.

The open sections reveal more explicitly the fractal structure as one is able to recognize
in the following images (see fig. 13).

POV-Ray 3.7 code to generate fig. 13

//===============================================

// Newton’s method 3D set as a whole

// (POV-Ray cylindrical symmetry open section)

//===============================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect
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Fig.12 - POV 3.7 3D Newton’s method set [f(z) = z4 + 1] with cylindrical symmetry
(two different glass renderings)

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-35, 1, 0>

angle 100

}

light_source // Area light source (creates soft shadows)

{

0*x // light’s position (translated below)

color Silver // light’s color

// <widthVector> <heightVector> nLightsWide mLightsHigh

area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

4, 4 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

translate <40, 80, -40> // <x y z> position of light

}

#declare R = 0.9; // set radius value

#declare L = 1.10; // set square area side

#declare X = 0.01; // set co-ordinate x initial value

#declare Y = 0.01; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 15; // set number of cycles

#declare Nr = 25; // set number of sections

#declare Th = -35;

#declare Ph = 30;

union{ #for (p, -n, n, 1)

#declare IncX = p*L/n;
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Fig.13 - POV 3.7 3D Newton’s method set with cylindrical symmetry open section [f(z) = z4 + 1]
(four different glass renderings)
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#for (q, -n, n, 1)

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#for (i,1,N)

#declare XX = 3*X/4 - X*(X*X - 3*Y*Y)/(X*X + Y*Y)/(X*X + Y*Y)/

(X*X + Y*Y)/4;

#declare YY = 3*Y/4 - Y*(Y*Y - 3*X*X)/(X*X + Y*Y)/(X*X + Y*Y)/

(X*X + Y*Y)/4;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.05)

#for (k,0,Nr)

sphere {

< p, abs(q)*cos(3.14*k/Nr), abs(q)*sin(3.14*k/Nr) >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Yellow }

// alternative pigment { color Col_Glass_Old }

// alternative pigment { color Col_Glass_Red }

// alternative pigment { color Col_Glass_Bluish }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 }

}

#end // end if

#end // end if

#end // end for k

#end // end for i

#end // end for q

#end // end for p

rotate < 0, Th, Ph >

translate <50,20,0> }

5.2 Sequential rendering of fractal structures with cylindrical
symmetry

Following the same exposition order as in the previous chapter we now examine the process
of generation of 3D fractal structures with cylindrical symmetry, no more limiting ourselves
to view the final result of the process, i.e., the structure built as a whole. As before we
will consider generalized 3D Mandelbrot, Julia and Newton’s method sets, according to two
generation processes.

1. In this section (§5.2) we present a sequentially ordered rendering process.

2. While in the next section (§5.3) we will follow a random process from which an ordered
structure will emerge as an attractor.
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5.2.1 POV-Ray 3.7 sequential rendering of 3D Mandelbrot set with cylin-
drical symmetry

We begin showing the images of four sequential steps of a generalized 3D Mandelbrot set
with cylindrical symmetry (see fig. 14).

POV-Ray 3.7 code to generate fig. 14

//===============================================

// Mandelbrot 3D set generated sequentially

// (POV-Ray cylindrical symmetry open section)

//===============================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -3.0, 10, -5>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

light_source {

< 5.0, 10, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 10; // set number of cycles

#declare Nr = 50; // set number of sections

#declare Th = -45;

#declare Ph = 30;

union{ #for (p, -n, n, 1)

#for (q, 0, n, 1) // alternative n/8, n/4, n/2

#declare X = 0;

#declare Y = 0;

#for (i,1,N)

#declare XX = X*X - Y*Y + p*L/n - 1;

#declare YY = 2*X*Y + q*L/n;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.01)

#for (k,0,Nr)

sphere {
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Fig.14 - POV 3.7 3D Mandelbrot set with cylindrical symmetry open section generated sequentially
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< p, q*cos(3.14*k/Nr), q*sin(3.14*k/Nr) >, 1

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 }

}

#end // end if

#end // end if

#end // end for k

#end // end for i

#end // end for q

#end // end for p

rotate < 0, Th, Ph >}

5.2.2 POV-Ray 3.7 sequential rendering of 3D Julia set with cylindrical
symmetry

After examining the sequential code generating a Mandelbrot set with cylindrical symmetry
we see, now, how in a similar way one can obtain a Julia set by rotation around to a symmetry
axis (see fig. 15).

POV-Ray 3.7 code to generate fig. 15

//===================================================

// Julia 3D set generated sequentially

// (POV-Ray cylindrical symmetry open section)

//===================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -3.0, 10, -5>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

light_source {

< 5.0, 10, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value
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Fig.15 - POV 3.7 3D Julia set with cylindrical symmetry open section generated sequentially
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#declare Y = 0; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 30; // set number of cycles

#declare Nr = 25; // set number of sections

#declare Th = -45;

#declare Ph = 30;

#declare Cx = -0.7454294; // set parameter c values

#declare Cy = 0;

union{ #for (p, -n, n, 1)

#declare IncX = p*L/n;

#for (q, 0, n, 1) // alternative n/16, n/8, n/4

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#for (i,1,N)

#declare XX = X*X - Y*Y + Cx;

#declare YY = 2*X*Y + Cy;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.002)

#for (k,0,Nr)

sphere {

< p, q*cos(3.14*k/Nr), q*sin(3.14*k/Nr) >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Old }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 }

}

#end // end if

#end // end if

#end // end for k

#end // end for i

#end // end for q

#end // end for p

rotate < 0, Th, Ph >}

5.2.3 POV-Ray 3.7 sequential rendering of 3D Newton’s method set with
cylindrical symmetry

Finally we show a genralized 3D Newton’s method set with cylindrical symmetry (see fig. 16).

POV-Ray 3.7 code to generate fig. 16

//=================================================

// Newton’s method 3D set generated sequentially

// (POV-Ray cylindrical symmetry open section)

//=================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect
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Fig.16 - POV 3.7 3D Newton’s method set with cylindrical symmetry open section generated sequentially
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#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-35, 1, 0>

angle 100

}

light_source // Area light source (creates soft shadows)

{

0*x // light’s position (translated below)

color Silver // light’s color

// <widthVector> <heightVector> nLightsWide mLightsHigh

area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

4, 4 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

translate <40, 80, -40> // <x y z> position of light

}

#declare R = 0.9; // set radius value

#declare L = 1.10; // set square area side

#declare X = 0.01; // set co-ordinate x initial value

#declare Y = 0.01; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 15; // set number of cycles

#declare Nr = 25; // set number of sections

#declare Th = -35;

#declare Ph = 30;

union{ #for (p, -n, n, 1)

#declare IncX = p*L/n;

#for (q, 0, n, 1) // alternative n/8, n/4, n/2

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#for (i,1,N)

#declare XX = 3*X/4 - X*(X*X - 3*Y*Y)/(X*X + Y*Y)/(X*X + Y*Y)/

(X*X + Y*Y)/4;

#declare YY = 3*Y/4 - Y*(Y*Y - 3*X*X)/(X*X + Y*Y)/(X*X + Y*Y)/

(X*X + Y*Y)/4;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.05)

#for (k,0,Nr)

sphere {

< p, q*cos(3.14*k/Nr), q*sin(3.14*k/Nr) >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Bluish }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 }
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}

#end // end if

#end // end if

#end // end for k

#end // end for i

#end // end for q

#end // end for p

rotate < 0, Th, Ph >

translate <50,20,0> }

5.3 Random rendering of fractal structures with cylindrical
symmetry

The random rendering of ordered structures of any kind of systems – included fractals – is
very interesting since it allows to show how a random distribution of initial points, which
does not exhibit any apparent order, evolves assuming a gradually more and more ordered
configuration thanks to the information coded into the law governing the evolution process.

In the present section we will show four steps of the evolution of each one of our test
fractals, i.e., generalized 3D Mandelbrot, Julia and Newton’s method sets endowed with
cylindrical symmetry.

5.3.1 POV-Ray 3.7 random rendering of 3D Mandelbrot set with cylin-
drical symmetry

As usual we start with Mandelbrot set (see fig. 17)

POV-Ray 3.7 code to generate fig. 17

//===============================================

// Mandelbrot 3D set generated randomly

// (POV-Ray cylindrical symmetry)

//===============================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -150>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -3.0, 10, -5>

rgb <1.000000, 1.000000, 1.000000> * 2.0 // set white light color and intensity

}

light_source {

< 5.0, 10, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}
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Fig.17 - POV 3.7 3D Mandelbrot set with cylindrical symmetry generated randomly

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/MandCylindRD.m4v
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#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 10; // set number of cycles

#declare Nr = 50; // set number of sections

#declare Th = -45;

#declare Ph = 30;

#declare P = array[2*n+1][2*n+1]; // P matrix

#declare Q = array[2*n+1][2*n+1]; // Q matrix

union{ #for (p, -n, n, 1)

#for (q, -n, n, 1)

#declare X = 0;

#declare Y = 0;

#declare P[p+n][q+n] = 0;

#declare Q[p+n][q+n] = 0;

#for (i,0,N)

#declare XX = X*X - Y*Y + p*L/n;

#declare YY = 2*X*Y + q*L/n;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.01)

#declare P[p+n][q+n] = p+n;

#declare Q[p+n][q+n] = q;

#end // end if

#end // end if

#end // end for i

#end // end for q

#end // end for p

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (758);

// replace Nr by Nr*clock for animation

#for(j,0,n*n*Nr) // partial values n*n/32, n*n/16, n*n/4

#declare p = int(2*n*rand(Rnd_1));

#declare q = int(2*n*rand(Rnd_2));

#declare k = int(2*Nr*rand(Rnd_3));

sphere {

< P[p][q], Q[p][q]*cos(6.28*k/Nr), Q[p][q]*sin(6.28*k/Nr) >, 1

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 }

}

#end // end for j

rotate < 0, Th, Ph >

translate < -80, - 80, 0 >

}
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5.3.2 POV-Ray 3.7 random rendering of 3D Julia set with cylindrical
symmetry

The second example is provided by a Julia set (c = −0.7454294) with cylindrical symmetry
(see fig. 18).

POV-Ray 3.7 code to generate fig. 18

//=======================================================

// Julia 3D set ($c = -0.7454294$) generated randomly

// (POV-Ray cylindrical symmetry)

//=======================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -150>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -3.0, 10, -5>

rgb <1.000000, 1.000000, 1.000000> * 1.0 // set white light color and intensity

}

light_source {

< 5.0, 10, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X = 0; // set co-ordinate x initial value

#declare Y = 0; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 30; // set number of cycles

#declare Nr = 100; // se number of sections

#declare Th = -35;

#declare Ph = 30;

#declare Cx = -0.7454294; // set parameter c values

#declare Cy = 0;

#declare P = array[2*n+1][2*n+1]; // P matrix

#declare Q = array[2*n+1][2*n+1]; // Q matrix

union{ #for (p, -n, n, 1)

#declare IncX = p*L/n;

#for (q, -n, n, 1)

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#declare P[p+n][q+n] = 0;
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Fig.18 - POV 3.7 3D Julia set (c = −0.7454294) with cylindrical symmetry generated randomly

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/JuliaCylindRD.m4v
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#declare Q[p+n][q+n] = 0;

#for (i,0,N)

#declare XX = X*X - Y*Y + Cx;

#declare YY = 2*X*Y + Cy;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+.01)

#declare P[p+n][q+n] = p+n;

#declare Q[p+n][q+n] = q;

#end // end if

#end // end if

#end // end for i

#end // end for q

#end // end for p

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (758);

// replace Nr by Nr*clock for animation

#for(j,0,n*n*Nr) // partial values n*n/64, n*n/16, n*n/4

#declare p = int(2*n*rand(Rnd_1));

#declare q = int(2*n*rand(Rnd_2));

#declare k = int(2*Nr*rand(Rnd_3));

sphere {

< P[p][q], Q[p][q]*cos(6.28*k/Nr), Q[p][q]*sin(6.28*k/Nr) >, 1

texture {

pigment { color Col_Glass_Old }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 }

}

#end // end for j

rotate < 0, Th, Ph >

translate < -110, - 80, 0 >}

5.3.3 POV-Ray 3.7 random rendering of 3D Newton’s method set with
cylindrical symmetry

Finally we show a portion of a Newton’s method set generated starting from random initial
points (see fig. 19). Here is the related program code.

POV-Ray 3.7 code to generate fig. 19

//=================================================================

// Newton’s method 3D set [$f(z) = z^{4} + 1$] generated randomly

// (POV-Ray cylindrical symmetry)

//=================================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect
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Fig.19 - POV 3.7 3D Newton’s method set [f(z) = z4 + 1] with cylindrical symmetry generated randomly

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/NewtonCylindRD.m4v
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#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -450>

look_at <-35, 1, 0>

}

light_source // Area light source (creates soft shadows)

{

0*x // light’s position (translated below)

color Silver // light’s color

// <widthVector> <heightVector> nLightsWide mLightsHigh

area_light

<8, 0, 0> <0, 0, 8> // lights spread out across this distance (x * z)

2, 3 // total number of lights in grid (4x*4z = 16 lights)

adaptive 0 // 0,1,2,3...

jitter // adds random softening of light

translate <40, 80, -40> // <x y z> position of light

}

#declare R = 0.9; // set radius value

#declare L = 1.10; // set square area side

#declare X = 0.01; // set co-ordinate x initial value

#declare Y = 0.01; // set co-ordinate y initial value

#declare Z = 0; // set co-ordinate z initial value

#declare n = 200; // set number of pixels per area side

#declare N = 30; // set number of cycles

#declare Nr = 50; // set number of sections

#declare Th = -60;

#declare Ph = 20;

#declare P = array[2*n+1][n+1]; // P matrix

#declare Q = array[2*n+1][n+1]; // Q matrix

union{ #for (p, -n, n, 1)

#declare IncX = p*L/n;

#for (q, 0, n, 1)

#declare IncY = q*L/n;

#declare X = IncX;

#declare Y = IncY;

#declare P[p+n][q] = 0;

#declare Q[p+n][q] = 0;

#for (i,1,N)

#declare XX = 3*X/4 - X*(X*X - 3*Y*Y)/(X*X + Y*Y)/(X*X + Y*Y)/

(X*X + Y*Y)/4;

#declare YY = 3*Y/4 - Y*(Y*Y - 3*X*X)/(X*X + Y*Y)/(X*X + Y*Y)/

(X*X + Y*Y)/4;

#declare X = XX;

#declare Y = YY;

#if (X*X+Y*Y > R)

#if (X*X+Y*Y < R+0.02)

#declare P[p+n][q] = p+n;

#declare Q[p+n][q] = q;

#end // end if

#end // end if

#end // end for i

#end // end for q

#end // end for p



#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (758);

#for (j,0,n*n*Nr) // partial values n*n/64, n*n/16, n*n/4

#declare p = int(2*n*rand(Rnd_1));

#declare q = int(n*rand(Rnd_2));

#declare k = int(Nr*rand(Rnd_3));

sphere {

< P[p][q], Q[p][q]*cos(2*pi*k/Nr), Q[p][q]*sin(2*pi*k/Nr) >, 1

hollow

radiosity { importance 1.0 }

texture {

pigment { color Col_Glass_Bluish }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 }

}

#end // end for j

rotate < 0, Th, Ph >

translate <-150,-50,0> }
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Chapter 6

Three-dimensional fractals from
quaternions and hypercomplex
numbers
Rendering whole structures, sequential and random processes

The 3D fractals we dealt with in the previous chapters either as landscapes or as structures
with cylindrical symmetry, generated by revolution around a symmetry axis, possess a com-
plexity level depending only on one complex parameter variation, just like the 2D fractals
starting from which they are built. In fact Mandelbrot, Julia and Newton’s method fractals
are constructed employing complex numbers (z = a+ ib) which are characterized only by two
real components (a, b) identifying two space dimensions (Gauss plane).

In order to raise the degree of complexity, people thought to generalize fractal generation
from usual complex numbers to multidimensional generalized complex numbers, like e.g.,
quaternions and some kind of hypercomplex numbers.

a) Quaternions are a sort of generalization of scalar complex numbers z = a + ib where
the imaginary unit i solves the algebraic equation:

z2 = −1, (6.1)

to new entities q = a+ ib+ jc+ kd involving further imaginary units j, k.

Each quaternion is equivalent to a 2D matrix solving the matrix equation:

M2 = −U ⇐⇒
(
M11 M22

M21 M22

)
=

(
−1 0
0 −1

)
. (6.2)

145
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The previous equation has three independent solutions:

I =

(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
, K =

(
0 i
i 0

)
, (6.3)

which are the matrix representation of the extended imaginary units i, j, k, obeying,
consequently, together to the usual imaginary unit i, to the algebraic rules:

i2 = −1, j2 = −1, k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.
(6.4)

But so proceeding we have too many components to be represented in ordinary 3D
space. The problem may be solved projecting quaternions onto a 3D hyperplane, i.e.
onto the usual 3D space, choosing e.g., always vanishing fourth components (d = 0).
Therefore we may consider simply generalized complex numbers involving two imagi-
nary units i, j as:

z = a+ ib+ jc, (6.5)

with the algebraic rules:

i2 = −1, j2 = −1, ij = ji = 0. (6.6)

So we will have three components generalized complex numbers and three real param-
eters involved in generalizing Mandelbrot, Julia and Newton’s method sets.

b) Hypercomplex numbers have been obtained as an alternative possibile generalization of
usual complex numbers.1

A type of hypercomplex numbers due to Davenport (1996) and sometimes called “the
hypercomplex numbers” are defined according to the following multiplication rules:

i2 = j2 = −k2 = −1,

ij = ji = k, jk = kj = −i, ki = ik = −j.
(6.7)

c) An interesting alternative to quaternions and hypercomplex numbers, for our purposes,
is offered by a simple combination of two usual complex numbers:

z1 = x1 + iy1, z2 = x2 + iy2, (6.8)

1See, e.g., Wolfram MathWorld, “Hypercomplex Number” (mathworld .wolfram.com/Hyper
complexNumber.html).

http://mathworld.wolfram.com/HypercomplexNumber.html
http://mathworld.wolfram.com/HypercomplexNumber.html
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when one equates e.g., their real parts so that one obtains:

z1 = x+ iy1, z2 = x+ iy2, (6.9)

and plots the three real numbers x, y1, y2 along the Cartesian axes of the 3D space. Fol-
lowing the latter way we will obtain shapes similar to the ones provided by hypercomplex
numbers, but more detailed, as we will see later, in this chapter. In the following we
will refer the sets generated by such a procedure as double complex fractals.

6.1 The POV-Ray 3.7 “Julia fractal” built-in function

The rendering software POV-Ray 3.7 includes a built-in function to generate generalized 3D
Julia sets employing quaternions as wholes. The process is fast until we require a relative
small number of iterations, i.e., a relative small computing precision. The graphical rendering
is interesting even if it does not reveal significant fractal details and it does not allow –
at least in a simple way – to investigate internal sections with minimum and maximum
thresholds as we have shown in the previous chapter examining fractals with a cylindrical
symmetry. Moreover the “Julia fractal” built-in function does not seem to allow to investigate
the generation process during its evolution steps. An aspect which, as we have already
repeatedly emphasized, is relevant in order to biological applications. Here are few examples.

Fig.1 - POV 3.7 3D Julia set (c = −0.745429) as a whole
(by “Julia fractal” function [quaternion])
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POV-Ray 3.7 code to generate fig 1

//================================================

// Julia 3D set ($c=-0.745429$) as a whole

// (POV-Ray Julia_fractal function [quaternion])

//================================================

#include "colors.inc" // Standard Color definitions

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

perspective

location < 1.0, 1.0, -3>

right x * 1

up y * 3/4

angle 50

look_at < -0.2, 0.0, 0.0>

}

light_source { // set point light sources location

< 0.0, 10, -10>

rgb <1.000000, 0.500000, 0.000000> * 2.0

}

julia_fractal { // apply julia_fractal fucntion

<-0.745429,0.0,0.0,0.0>

hypercomplex

sqr

max_iteration 10

precision 80

radiosity { importance 1.0 }

pigment {BrightGold scale 1}

finish {

ambient .1

diffuse .5

reflection 1

specular .5

metallic 2}

rotate y*137

rotate z*20}

The method has the relevant advantage to allow to build 3D structures even if they do
not exhibit a cylindrical symmetry as it is shown in the picture in fig. 2

POV-Ray 3.7 code to generate fig 2

//=======================================================

// Julia 3D set ($c=-0.745429+j0.25$) as a whole

// (POV-Ray Julia\_fractal function [quaternion])

//=======================================================

#include "colors.inc" // Standard Color definitions

#include "metals.inc" // Metal pigment effect
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Fig.2 - POV 3.7 3D Julia set (c = −0.745429 + j 0.25) as a whole
(by “Julia fractal” function [quaternion])

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

perspective

location < 1.0, 1.0, -4>

right x * 1

up y * 3/4

angle 45

look_at < -0.1, 0.0, 0.0>

}

light_source { // set point light sources location

< 0.0, -10, -10>

rgb <1.000000, 1.000000, 1.000000> * 1.0

}

julia_fractal { // apply julia_fractal fucntion

<-0.745429,0.0,0.25,0.0>

quaternion

sqr

max_iteration 10

precision 50

pigment { Orange scale 1}

finish {

ambient .2

diffuse 1

reflection 1

specular .3

metallic 1}

rotate <50,135,-20>}
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Fig.3 - POV 3.7 3D Julia set (c = −0.745429) as a whole
(by “Julia fractal” function [hypercomplex])

POV-Ray 3.7 code to generate fig 3

//===================================================

// Julia 3D set ($c=-0.745429$) as a whole

// (POV-Ray Julia_fractal function [hypercomplex])

//===================================================

#include "colors.inc" // Standard Color definitions

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

perspective

location < 1.0, 1.0, -3>

right x * 1

up y * 3/4

angle 50

look_at < -0.2, 0.0, 0.0>

}

light_source { // set point light sources location

< 0.0, 10, -10>

rgb <1.000000, 0.500000, 0.000000> * 2.0

}

julia_fractal { // apply julia_fractal fucntion

<-0.745429,0.0,0.0,0.0>

hypercomplex

sqr

max_iteration 10

precision 80
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radiosity { importance 1.0 }

pigment {BrightGold scale 1}

finish {

ambient .1

diffuse .5

reflection 1

specular .5

metallic 2

}

rotate y*137

rotate z*20

}

Fig.4 - POV 3.7 3D Julia set (c = −0.745429 + i0.113089 + j0.113089)
as a whole (by “Julia fractal” function [hypercomplex])

POV-Ray 3.7 code to generate fig 4

//================================================================

// Julia 3D set ($c=-0.745429+i0.113089+j0.113089$) as a whole

// (POV-Ray Julia_fractal function [hypercomplex])

//================================================================

#include "colors.inc" // Standard Color definitions

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

perspective

location < 1.0, 1.0, -3>

right x * 1
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up y * 3/4

angle 50

look_at < 0.0, 0.0, 0.0>

}

light_source { // set point light sources location

< 0.0, 15, -10>

rgb <1.000000, 0.500000, 0.000000> * 2.0

}

julia_fractal { // apply julia_fractal fucntion

<-0.745429,0.113089,0.113089,0.0>

hypercomplex

sqr

max_iteration 15

precision 80

radiosity { importance 1.0 }

pigment {BrightGold scale 1}

finish {

ambient .1

diffuse .5

reflection .5

specular .5

metallic 2

}

rotate x*(-10)

rotate y*150

rotate z*30}

6.2 Point by point generation of 3D quaternion fractal sets

Starting from the present section we abandon both a cylindrical symmetry approach to 3D
fractals and the built-in “Julia fractal” function, which provide final stages of structures as
wholes without revealing the different stages of the process according to which the images
themselves are produced. Being interested, on the contrary, in viewing in detail the entire
process of generation of the ordered structures, we need, as we have seen in the previous
chapters, to build each 3D fractal following a point by point image generation method. Of
course a longer machine time will be required2

which will increase according to power 3, being 3 the space dimensions to be scanned. Each
one by a sequential cycle, like, e.g, a for-next loop. We will consider, following our usual
approach, both point by point quaternion and respectively hypercomplex fractal structures
generated:

1. either as wholes;

2. or by a sequential process;

3. or by a random process.

2A time interval that often may take even several hours, depending on the machine clock speed and memory.



Chapter 6 –Three-dimensional fractals form quaternions and hypercomplex numbers 153

In the following sections we will test what happens employing the recurrence law:

Z = Z2 + C, (6.10)

where, now Z,C involve only three parts of quaternions:

Z = X + iY + jZ, C = CX + iCY + jCZ , (6.11)

since the ordinary space has only three dimensions. Taking into account the rules previously
established we have:

Z2 = X2 − Y 2 − Z2 + 2 iXY + 2jXZ, (6.12)

and the resulting recurrence rules:

Xn+1 = X2
n − Y 2

n − Z2
n + CX ,

Yn+1 = 2XnYn + CY ,

Zn+1 = 2XnZn + CZ .

(6.13)

We point out that several combinations are possible since each co-ordinate axis of the
space may be scanned either setting the initial value of a co-ordinate (X,Y, Z) equal to
zero3 varying the related CX , CY , CZ or, on the contrary, setting a constant value for a C
component and varying the starting value of the related X,Y, Z co-ordinate.

In the former case the fractal structure will exhibit a Mandelbrot-like behavior along the
related co-ordinate axis, while in the latter case it will behave like a Julia set. So the following
interesting distinct combinations will arise.4

X0 Y0 Z0 CX CY CZ
Mand.-Mand.-Mand. 0 0 0 var var var

Mand.-Mand.-Julia 0 0 var var var const

Mand.-Julia-Julia 0 var var var const const

Julia-Julia-Julia var var var const const const

We will examine only some of the resulting shapes with their related POV-Ray 3.7 codes.

6.2.1 Generalized 3D quaternion fractals sets as wholes

Mandelbrot-Mandelbrot-Mandelbrot quaternion fractal set

Manifestly the structure of this 3D fractal structure exhibits a cylindrical symmetry as it is
better shown by sections along the co-ordinate planes.

3Or to any other stated value.
4The remaining combinations like Julia-Mand-Mand, Julia-Julia-Mand, etc. result simply by co-ordinate

axes rotation.
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Fig.5 - POV 3.7 3D Quaternion Mandelbrot-Mandelbrot-Mandelbrot set as a whole
(point by point generation)

POV-Ray 3.7 code to generate figs 5, 6 and 7

//================================================

// Quaternion 3D Mand-Mand-Mand set as a whole

// (POV-Ray point by point generation)

//================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 3.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side
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Fig.6 - POV 3.7 Open section of a 3D quaternion Mandelbrot-Mandelbrot-Mandelbrot set as a whole
(point by point generation)

#declare st = 1; // set increment step

#declare N = 40; // set number of cycles

#declare Th = -45; // set rotation angles

#declare Ph = 30;

union{ #for (p, -n, n, st) // replace n by n*clock for animation

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st) // alternative #for (r, 0, n, st)

#declare IncZ = r*L/n; // Mand2 Y2 increment

#declare X = 0; // start MandX

#declare Y = 0; // start MandY

#declare Z = 0; // start MandZ

#for (k,1,N)

#declare XX = X*X - Y*Y - Z*Z + IncX; // cycle MandX

#declare YY = 2*X*Y + IncY; // cycle MandY

#declare ZZ = 2*X*Z + IncZ; // cycle MandZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if ( W > R) // escape if

#if (W < R + 0.0015) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }}
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Fig.7 - Cartesian plane sections of the POV 3.7 3D Quaternion Mandelbrot-Mandelbrot-Mandelbrot set
as a whole

(point by point generation)

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 30, 15, 0 >

rotate < 0, Th, Ph > }

Julia-Julia-Julia quaternion fractal sets

Here is a quaternion Julia-Julia-Julia set (C = −0.7454294) which exhibits a cylindrical
symmetry the C parameter being a real number.

POV-Ray 3.7 code to generate fig 8, 9 and 10

//=========================================================

// Quaternion 3D Julia-Julia-Julia set ($C = -0.7454294$)

// as a whole (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background
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Fig.8 - POV 3.7 3D Quaternion Julia-Julia-Julia set (C = −0.7454294) set as a whole
(point by point generation)

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1; // set increment step

#declare Nr = 30; // set number of cycles

#declare Th = 0; // set rotation angles

#declare Ph = 30;

#declare Cx = -0.7454294; // JuliaX parameter

#declare Cy = 0; // JuliaY parameter

#declare Cz = 0; // JuliaZ parameter

union{

#for (p, -n, n, st) // replace n by n*clock for animation

#declare IncX = p*L/n; // JuliaX increment

#for (q, -n, n, st)

#declare IncY = q*L/n; // JuliaY increment
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Fig.9 - POV 3.7 Open section of a 3D quaternion Julia-Julia-Julia set (C = −0.7454294) as a whole
(point by point generation)

#for (r, -n, n, st) // alternative #for (r, 0, n, st)

#declare IncZ = r*L/n; // JuliaZ increment

#declare X = IncX; // start JuliaX

#declare Y = IncY; // start JuliaY

#declare Z = IncZ; // start JuliaZ

#for (k,1,Nr)

#declare XX = X*X - Y*Y - Z*Z + Cx; // cycle JuliaX

#declare YY = 2*X*Y + Cy; // cycle JuliaY

#declare ZZ = 2*X*Z + Cz; // cycle JuliaZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p
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Fig.10 - Cartesian plane sections of the POV 3.7 3D Quaternion Julia-Julia-Julia set (C = −0.7454294)
as a whole (point by point generation)

#end // end for r

translate < 0, -10, 0 >

rotate < 0, Th, Ph > }

And here is the structure of a d generalized quaternion “sea-horse” Julia set characterized
by the parameters c1 = c2 = −0.7454294 + i0.113089 (no cylindrical symmetry).

Fig.11 - POV 3.7 3D Quaternion “sea-horse” Julia-Julia-Julia set
(C = −0.7454294 + i0.113089 + j0.00642) as a whole

(point by point generation)
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Fig.12 - POV 3.7 Open section of a 3D quaternion “sea-horse” Julia-Julia-Julia set
(C = −0.7454294 + i0.113089 + j0.00642) as a whole

(point by point generation)

Fig.13 - Cartesian plane sections of the POV 3.7 3D Quaternion “sea-horse” Julia-Julia-Julia set
(C = −0.7454294 + i0.113089 + j0.00642) as a whole

(point by point generation)

POV-Ray 3.7 code to generate fig 11, 12 and 13

//=====================================================

// Quaternion 3D Julia-Julia-Julia set

// ($C = -0.7454294 + i 0.113089 + j 0.00642$)

// as a whole (POV-Ray point by point generation)

//=====================================================

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location



Chapter 6 –Three-dimensional fractals form quaternions and hypercomplex numbers 161

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st1 = 1; // set increment steps

#declare st2 = 3;

#declare st3 = 3;

#declare Nr = 30; // set number of cycles

#declare Th = 0; // set rotation angles

#declare Ph = 30;

#declare Cx = -0.7454294; // JuliaX parameter

#declare Cy = 0.113089; // JuliaY parameter

#declare Cz = 0.00642; // JuliaZ parameter

union{

// replace n by n*clock for animation

#for (p, -n, n, st1)

#declare IncX = p*L/n; // JuliaX increment

#for (q, -n, n, st2)

#declare IncY = q*L/n; // JuliaY increment

#for (r, -n, n, st3) // alternative #for (r, 0, n, st3)

#declare IncZ = r*L/n; // JuliaZ increment

#declare X = IncX; // start JuliaX

#declare Y = IncY; // start JuliaY

#declare Z = IncZ; // start JuliaZ

#for (k,1,Nr)

#declare XX = X*X - Y*Y - Z*Z + Cx; // cycle JuliaX

#declare YY = 2*X*Y + Cy; // cycle JuliaY

#declare ZZ = 2*X*Z + Cz; // cycle JuliaZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if ( W > R) // escape if

#if (W < R + 0.001) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}
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#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 0, -10, 0 >

rotate < -20, Th, Ph > }

Julia-Mandelbrot-Mandelbrot quaternion fractal set

Among all the possible combinations of generalized Mandelbrot and Julia sets an elegant one
is obtained assigning a constant value to only one of components of the parameter C, say
CX , varying the remaining CY , CZ and the co-ordinate X.

Fig.14 - POV 3.7 3D Quaternion Julia-Mandelbrot-Mandelbrot set as a whole
(point by point generation)

POV-Ray 3.7 code to generate figs 14, 15 and 16

//===================================================

// Quaternion 3D Julia-Mand-Mand set

// (C = -0.7454294, Y(0) = 0, Z(0) = 0) as a whole

// (POV-Ray point by point generation)

//===================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma
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Fig.15 - POV 3.7 Open section of a 3D quaternion Mandelbrot-Mandelbrot-Mandelbrot set as a whole
(point by point generation)

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 30, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 3.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st1 = 1; // set increment steps

#declare st2 = 1;

#declare st3 = 1;

#declare N = 20; // set number of cycles

#declare Th = -45; // set rotation angles

#declare Ph = 30;

#declare Cx = -0.7454294; // set C parameter values

union{ // replace n by n*clock for animation

#for (p, -n, n, st1)

#declare IncX = p*L/n; // Julia X increment
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Fig.16 - Cartesian plane sections of the POV 3.7 3D Quaternion Julia-Mandelbrot-Mandelbrot set
(CX = −0.7454294, Y0 = 0, Z0 = 0) as a whole (point by point generation)

#for (q, -n, n, st2)

#declare IncY = q*L/n; // Mand Y increment

#for (r, -n, n, st3) // replace n by n*clock for animation

#declare IncZ = r*L/n; // Mand Z increment

#declare X = IncX; // start JuliaX

#declare Y = 0; // start MandY

#declare Z = 0; // start MandZ

#for (k,1,N)

#declare XX = X*X - Y*Y - Z*Z + Cx; // cycle JuliaX

#declare YY = 2*X*Y + IncY; // cycle MandY

#declare ZZ = 2*X*Z + IncZ; // cycle MandZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if ( W > R) // escape if

#if (W < R + 0.01) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 30, 15, 10 >

rotate < Th, Th, Ph > }



Chapter 6 –Three-dimensional fractals form quaternions and hypercomplex numbers 165

6.2.2 Generalized 3D quaternion fractals generated sequentially

In the present section we show four steps of the ordered sequential generation of each kind of
the generalized combinations of the 3D Mandelbrot and Julia sets examined previously. In
the related POV-Ray 3.7 codes the number of points of each step is denoted by ns.

Mandelbrot-Mandelbrot-Mandelbrot quaternion fractal set

We remember that we have denoted as Mandelbrot-Mandelbrot-Mandelbrot 3D fractal set ob-
tained starting from the initial values X0 = Y0 = Z0 = 0 and variable increments Cx, Cy, Cz.

POV-Ray 3.7 code to generate figs 17 and 18

//=========================================================

// Quaternion 3D Mand-Mand-Mand set generated sequentially

// (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0} // set display gamma

background { color rgb <00,0.0,0.0> } // set black background

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 3.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare ns = 200; // partial values ns = 50, 75, 100

#declare st = 1;

#declare N = 40; // N = 40

#declare Th = -45;

#declare Ph = 30;

// replace ns by ns*clock for animation

union{ #for (p, -ns, ns, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -ns, ns, st)

#declare IncY = q*L/n; // Mand1 Y1 increment

#for (r, -ns, ns, st) // alternative #for (r, 0, ns, st) [open sets]
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Fig.17 - POV 3.7 3D Quaternion Mandelbrot-Mandelbrot-Mandelbrot set generated sequentially

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/MandMandMandQTSQ.m4v
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Fig.18 - POV 3.7 3D Open section of a quaternion Mandelbrot-Mandelbrot-Mandelbrot set
generated sequentially
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#declare IncZ = r*L/n; // Mand2 Y2 increment

#declare X = 0; // start MandX

#declare Y = 0; // start MandY

#declare Z = 0; // start MandZ

#for (k,1,N)

#declare XX = X*X - Y*Y - Z*Z + IncX; // cycle MandX

#declare YY = 2*X*Y + IncY; // cycle MandY

#declare ZZ = 2*X*Z + IncZ; // cycle MandZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if ( W > R) // escape if

#if (W < R + 0.0015) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 30, 15, 0 >

rotate < 0, Th, Ph > }

Julia-Julia-Julia quaternion fractal set (C = −0.7454294)

The second example is provided by a Julia-Julia-Julia quaternion fractal set obtained assign-
ing to the parameters C = Cx + iCy + jCz the real value C = −0.7454294.

POV-Ray 3.7 code to generate figs 19 and 20

//=========================================================

// Quaternion 3D Julia-Julia-Julia set ($C = -0.7454294$)

// generated sequentially

// (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc"

#include "metals.inc"

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>
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look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare Nr = 30; // Nr = 40

#declare Th = 0;

#declare Ph = 30;

#declare Cx = -0.7454294; // JuliaX parameter

#declare Cy = 0; // JuliaY parameter

#declare Cz = 0; // JuliaZ parameter

union{

// replace n by n*clock for animation

#for (p, -n, n, st)

#declare IncX = p*L/n; // JuliaX increment

#for (q, -n, n, st)

#declare IncY = q*L/n; // JuliaY increment

#for (r, -n, n, st)

#declare IncZ = r*L/n; // JuliaZ increment

#declare X = IncX; // start JuliaX

#declare Y = IncY; // start JuliaY

#declare Z = IncZ; // start JuliaZ

#for (k,1,Nr)

#declare XX = X*X - Y*Y - Z*Z + Cx; // cycle JuliaX

#declare YY = 2*X*Y + Cy; // cycle JuliaY

#declare ZZ = 2*X*Z + Cz; // cycle JuliaZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3
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Fig.19 - POV 3.7 3D Quaternion Julia-Julia-Julia set (C = −0.7454294) generated sequentially

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/JuliaJuliaJuliaQTSQ.m4v
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Fig.20 - POV 3.7 3D open section of a quaternion Julia-Julia-Julia set
(C = −0.7454294) generated sequentially
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specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 0, -10, 0 >

rotate < 0, Th, Ph > }

Julia-Julia-Julia “sea-horse” quaternion fractal set (C = −0.7454294 + i0.113089 +
j0.00642)

A third example is rperesented by a gemeralized 3D “sea-horse” Julia-Julia-Julia quaternion
fractal set obtained assigning to the parameters C = −0.7454294 + i0.113089 + j0.00642,
which does not exhibit a cylindrical symmetry.

POV-Ray 3.7 code to generate figs 21 and 22

//================================================================

// Quaternion 3D ‘‘sea-horse’’ Julia-Julia-Julia set

// ($C = -0.7454294 + i 0.113089 + j 0.113089$) generated sequentially

// (POV-Ray point by point generation)

//================================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare ns = 200; // partial ns = 50, 75, 100

#declare st1 = 1; // set increment steps

#declare st2 = 1;

#declare st3 = 1;

#declare Nr = 30; // set number of cycles

#declare Th = 0; // set rotation angles

#declare Ph = 30;
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Fig.21 - POV 3.7 3D Quaternion “sea-horse” Julia-Julia-Julia set (C = −0.7454294 + i0.113089 + j0.00642)
generated sequentially
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Fig.22 - POV 3.7 3D open section of a quaternion “sea-horse” Julia-Julia-Julia set
(C = −0.7454294 + i0.113089 + j0.00642) generated sequentially
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#declare Cx = -0.7454294; // JuliaX parameter

#declare Cy = 0.113089; // JuliaY parameter

#declare Cz = 0.113089; // JuliaZ parameter

union{

// replace n by n*clock for animation

#for (p, -ns, ns, st1)

#declare IncX = p*L/n; // JuliaX increment

#for (q, -ns, ns, st2)

#declare IncY = q*L/n; // JuliaY increment

#for (r, -ns, ns, st3)

#declare IncZ = r*L/n; // JuliaZ increment

#declare X = IncX; // start JuliaX

#declare Y = IncY; // start JuliaY

#declare Z = IncZ; // start JuliaZ

#for (k,1,Nr)

#declare XX = X*X - Y*Y - Z*Z + Cx; // cycle JuliaX

#declare YY = 2*X*Y + Cy; // cycle JuliaY

#declare ZZ = 2*X*Z + Cz; // cycle JuliaZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if ( W > R) // escape if

#if (W < R + 0.0053) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 30, 15, 20 >

rotate < Th, Th, Ph > }

Julia-Mandelbrot-Mandelbrot quaternion fractal set (C = −0.7454294)

A fourth example is given by a Julia-Mandelbrot-Mandelbrot quaternion fractal set which is
obtained setting Cx = −0.7454294 and variable Cy, Cz.
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POV-Ray 3.7 code to generate figs 23 and 24

//=========================================================

// Quaternion 3D Julia-Mandelbrot-Mandelbrot fractal set

// ($C = -0.7454294$) generated sequentially

// (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 30, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 3.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st1 = 1; // set increment steps

#declare st2 = 1;

#declare st3 = 1;

#declare N = 20; // set number of cycles

#declare Th = -45; // set rotation angles

#declare Ph = 30;

#declare Cx = -0.7454294; // JuliaX parameter

union{

// replace n by n*clock for animation

#for (p, -n, n, st1)

#declare IncX = p*L/n; // Julia X increment

#for (q, -n, n, st2)

#declare IncY = q*L/n; // Mand Y increment

#for (r, -n, n, st3)

#declare IncZ = r*L/n; // Julia Y increment

#declare X = IncX; // start JuliaX

#declare Y = 0; // start MandY

#declare Z = 0; // start MandZ

#for (k,1,N)

#declare XX = X*X - Y*Y - Z*Z + Cx; // cycle JuliaX

#declare YY = 2*X*Y + IncY; // cycle MandY
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Fig.23 - POV 3.7 3D quaternion Julia-Mandelbrot-Mandelbrot set (C = −0.7454294)
generated sequentially

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/JuliaMandMandQTSQ.m4v
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Fig.24 - POV 3.7 3D Open section of a quaternion Julia-Mandelbrot-Mandelbrot
set (C = −0.7454294) generated sequentially
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#declare ZZ = 2*X*Z + IncZ; // cycle JuliaZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if ( W > R) // escape if

#if (W < R + 0.01) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 30, 15, 10 >

rotate < Th, Th, Ph > }

6.2.3 Generalized 3D quaternion fractal sets generated randomly

The main interest in our investigation on order emerging from random initial conditions
driven by information is concerned on randomly generated structures. In this section we
show some examples of quaternion fractals, i.e., 3D Mandelbrot, Julia sets and mixed ones.

Mandelbrot-Mandelbrot-Mandelbrot quaternion fractal set

POV-Ray 3.7 code to generate figs 25 and 26

//=========================================================

// Quaternion 3D Mandelbrot-Mandelbrot-Mandelbrot fractal set

// generated randomly

// (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location
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Fig.25 - POV 3.7 3D quaternion Mandelbrot-Mandelbrot-Mandelbrot set generated randomly

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/MandMandMandQTRD.m4v
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Fig.26 - POV 3.7 3D Open section of a quaternion Mandelbrot-Mandelbrot-Mandelbrot set
generated randomly
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< -20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 3.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare N = 40; // N = 40

#declare Th = -45;

#declare Ph = 30;

#declare K = array[2*n+1][2*n+1][2*n+1]; // escape rate 3D matrix

#for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)

#declare IncZ = r*L/n; // Mand2 Y2 increment

#declare X = 0; // start MandX

#declare Y = 0; // start MandY

#declare Z = 0; // start MandZ

#declare K[p+n][q+n][r+n] = 0;

#for (k,0,N)

#declare XX = X*X - Y*Y - Z*Z + IncX; // cycle MandX

#declare YY = 2*X*Y + IncY; // cycle MandY

#declare ZZ = 2*X*Z + IncZ; // cycle MandZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if ( W > R) // escape if

#if (W < R + 0.0015) // escape if

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

union{

// replace n*n*n by n*n*n*clock for animation

#for(j,0,n*n*n*64)

#declare p = int(2*n*rand(Rnd_1));

#declare q = int(2*n*rand(Rnd_2));

#declare r = int(2*n*rand(Rnd_3));

#if(K[p][q][r] > 0)
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sphere {

< -n+p, -n+q, -n+r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

translate < 30, 15, 0 >

rotate < 0, Th, Ph > }

#end // end if

#end} // end for j

Julia-Julia-Julia quaternion fractal set (C = −0.7454294)

Here is a 3D Julia-Julia-Julia quaternion fractal set (C = −0.7454294) generated randomly.

POV-Ray 3.7 code to generate figs 27 and 28

//=========================================================

// Quaternion 3D Julia-Julia-Julia fractal set

// generated randomly

// (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare Nr = 30; // Nr = 40

#declare Th = 0;

#declare Ph = 30;

#declare Cx = -0.7454294; // JuliaX parameter

#declare Cy = 0; // JuliaY parameter
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Fig.27 - POV 3.7 3D quaternion Julia-Julia-Julia set (C = −0.7454294) generated randomly

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/JuliaJuliaJuliaQTRD.m4v
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Fig.28 - POV 3.7 3D Open section of a quaternion Julia-Julia-Julia set
(C = −0.7454294) generated randomly
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#declare Cz = 0; // JuliaZ parameter

#declare K = array[2*n+1][2*n+1][2*n+1];

#for (p, -n, n, st)

#declare IncX = p*L/n; // JuliaX increment

#for (q, -n, n, st)

#declare IncY = q*L/n; // JuliaY increment

#for (r, -n, n, st)

#declare IncZ = r*L/n; // JuliaZ increment

#declare X = IncX; // start JuliaX

#declare Y = IncY; // start JuliaY

#declare Z = IncZ; // start JuliaZ

#declare K[p+n][q+n][r+n] = 0;

#for (k,0,Nr)

#declare XX = X*X - Y*Y - Z*Z + Cx; // cycle JuliaX

#declare YY = 2*X*Y + Cy; // cycle JuliaY

#declare ZZ = 2*X*Z + Cz; // cycle JuliaZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

union{

// replace n*n*n by n*n*n*clock for animation

#for(j,0,n*n*n) // alternative n*n*n/16 n*n*n/64 n*n*n/256

#declare p = int(2*n*rand(Rnd_1));

#declare q = int(2*n*rand(Rnd_2));

#declare r = int(2*n*rand(Rnd_3));

#if(K[p][q][r] > 0)

sphere {

< -n+p, -n+q, -n+r >, 1

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

translate < 0, -10, 0 >

rotate < 0, Th, Ph > }

#end // end if

#end} // end for j
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Julia-Mandelbrot-Mandelbrot quaternion fractal set (C = −0.7454294)

POV-Ray 3.7 code to generate figs 29 and 30

//=========================================================

// Quaternion 3D Julia-Mand-Mand fractal set

// ($C = -0.7454294$) generated randomly

// (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 3.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare Cx = -0.7454294;

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare N = 40; // N = 40

#declare Th = -45;

#declare Ph = 30;

#declare K = array[2*n+1][2*n+1][2*n+1];

#for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)

#declare IncZ = r*L/n; // Mand2 Y2 increment

#declare X = IncX; // start JuliaX

#declare Y = 0; // start MandY

#declare Z = 0; // start MandZ

#declare K[p+n][q+n][r+n] = 0;

#for (k,1,N)

#declare XX = X*X - Y*Y - Z*Z + Cx; // cycle JuliaX

#declare YY = 2*X*Y + IncY; // cycle MandY

#declare ZZ = 2*X*Z + IncZ; // cycle MandZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;
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Fig.29 - POV 3.7 3D quaternion Julia-Mand-Mand set (C = −0.7454294)
generated randomly

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/JuliaMandMandQTRD.m4v
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Fig.30 - POV 3.7 3D Open section of a quaternion Julia-Mand-Mand set
(C = −0.7454294) generated randomly
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#if ( W > R) // escape if

#if (W < R + 0.0015) // escape if

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

union{

// replace n*n*n by n*n*n*clock for animation

#for(j,0,n*n*n) // alternative n*n*n/16 n*n*n/64 n*n*n/256

#declare p = int(2*n*rand(Rnd_1));

#declare q = int(2*n*rand(Rnd_2));

#declare r = int(2*n*rand(Rnd_3));

#if(K[p][q][r] > 0)

sphere {

< -n+p, -n+q, -n+r >, 1

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

translate < 30, 15, 10 >

rotate < Th, Th, Ph >}

#end // end if

#end} // end for j

6.3 Point by point generation of 3D double complex fractal
sets

The third main section of the present chapter will be devoted to double complex 3D general-
ized fractals. We will follow the same exposition scheme as in the previous sections dedicated
to quaternion fractals.

1. First of all we consider generalized Mandelbrot, Julia and mixed sets as wholes.

2. Subsequently we will examine a sequential ordered process of generation of the same
structures.

3. And finally we show how those ordered structures may arise according to a random
process which assigns the initial conditions by chance.
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6.3.1 Generalized 3D double complex fractal sets as wholes

Mandelbrot-Mandelbrot-Mandelbrot double complex fractal set

We start considering a generalized 3D Mandelbrot set obtained varying the parameters
c1 = c1x + ic1y, c2 = c2x + ic2y along assigned intervals.

POV-Ray 3.7 code to generate figs 31, 32 and 33

//===================================================

// Double complex 3D Mand-Mand-Mand set as a whole

// (POV-Ray point by point generation)

//===================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare X1 = 0;

#declare X2 = 0;

#declare Y1 = 0;

#declare Y2 = 0;

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare Nr = 20; // Nr = 40

#declare Th = -45;

#declare Ph = 30;

union{ #for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, 0, n, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment

#declare X1 = 0; // start Mand1

#declare X2 = 0; // start Mand1
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Fig.31 - POV 3.7 double complex 3D Mandelbrot-Mandelbrot-Mandelbrot set
as a whole (point by point generation)

Fig.32 - POV 3.7 Open section of a 3D double complex Mandelbrot-Mandelbrot-Mandelbrot set as a whole
(point by point generation)
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Fig.33 - Cartesian plane sections of the POV 3.7 3D double complex Mandelbrot-Mandelbrot-Mandelbrot set
as a whole (point by point generation)

#declare Y1 = 0; // start Mand1

#declare Y2 = 0; // start Mand2

#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + IncX; // cycle Mand1

#declare XX2 = X2*X2 - Y2*Y2 + IncX; // cycle Mand1

#declare YY1 = 2*X1*Y1 + IncY1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + IncY2; // cycle Mand2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 80, -10, 0 >

rotate < 0, Th, Ph > }

Julia-Julia-Julia double complex fractal set (c1 = c2 = −0.745429)

We now show what happens to a Julia-Julia-Julia double complex set identified by the
parameters values c1 = c2 = −0.745429.
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Fig.34 - POV 3.7 double complex 3D Julia-Julia-Julia (c1 = c2 = −0.745429) set
as a whole (point by point generation)

Fig.35 - POV 3.7 Open section of a 3D double complex Julia-Julia-Julia (c1 = c2 = −0.745429) set as a
whole (point by point generation)
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Fig.36 - Cartesian plane sections of the POV 3.7 3D double complex Julia-Julia-Julia set
(c1 = c2 = −0.7454294) as a whole (point by point generation)

POV-Ray 3.7 code to generate figs 34, 35 and 36

//===================================================================

// Double complex 3D Julia-Julia-Julia set (c1 = c2 = -0.7454294)

// as a whole (POV-Ray point by point generation)

//===================================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare Nr = 20;

#declare Th = -30;

#declare Ph = 30;

#declare X1 = 0;

#declare X2 = 0;

#declare Y1 = 0;

#declare Y2 = 0;
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#declare Cx1 = -0.7454294;

#declare Cx2 = -0.7454294;

#declare Cy1 = 0;

#declare Cy2 = 0;

union{ #for (p, -n, n, st)

#declare IncX = p*L/n; // Julia1 X increment

#for (q, -n, n, st)

#declare IncY1 = q*L/n; // Julia1 Y1 increment

#for (r, -n, n, st)

#declare IncY2 = r*L/n; // Julia2 Y2 increment

#declare X1 = IncX; // start Julia1

#declare X2 = IncX; // start Julia2

#declare Y1 = IncY1; // start Julia1

#declare Y2 = IncY2; // start Julia2

#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + Cx1; // cycle Julia1

#declare XX2 = X2*X2 - Y2*Y2 + Cx2; // cycle Julia2

#declare YY1 = 2*X1*Y1 + Cy1; // cycle Julia1

#declare YY2 = 2*X2*Y2 + Cy2; // cycle Julia2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 80, -10, 0 >

rotate < 0, Th, Ph > }

Julia-Julia-Julia “sea-horse” double complex fractal set (c1 = c2 = −0.7454294 +
i0.113089)

And here is the structure of a double complex generalized “sea-horse” Julia set (c1 = c2 =
−0.7454294 + i0.113089).
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POV-Ray 3.7 code to generate fig 37, 38 and 39

//====================================================================

// Double complex 3D Julia-Julia-Julia set

// (c1 = c2 = -0.7454294 + i 0.113089)

// as a whole (POV-Ray point by point generation)

/====================================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 30, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare Nr = 50;

#declare Th = -10;

#declare Ph = 30;

#declare X1 = 0;

#declare X2 = 0;

#declare Y1 = 0;

#declare Y2 = 0;

#declare Cx1 = -0.7454294;

#declare Cx2 = -0.7454294;

#declare Cy1 = 0.113089;

#declare Cy2 = 0.113089;

union{ #for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment

#declare X1 = IncX; // start Julia 1

#declare X2 = IncX; // start Julia 2

#declare Y1 = IncY1; // start Julia 1
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Fig.37 - POV 3.7 3D Double complex Julia-Julia-Julia set (c1 = c2 = −0.7454294 + i0.113089) set
as a whole (point by point generation)

Fig.38 - POV 3.7 Open section of a 3D double complex Julia-Julia-Julia set
(c1 = c2 = −0.7454294 + i0.113089) as a whole

(point by point generation)
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Fig.39 - Cartesian plane sections of the POV 3.7 3D double complex Julia-Julia-Julia set
(c1 = c2 = −0.7454294 + i0.113089) as a whole (point by point generation)

#declare Y2 = IncY2; // start Julia 2

#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + Cx1; // cycle Julia 1

#declare XX2 = X2*X2 - Y2*Y2 + Cx2; // cycle Julia 2

#declare YY1 = 2*X1*Y1 + Cy1; // cycle Julia 1

#declare YY2 = 2*X2*Y2 + Cy2; // cycle Julia 2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if ( W > R) // escape if

#if (W < R + 0.05) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 30, -20, 0 >

rotate < 0, Th, Ph > }
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Julia-Mandelbrot-Mandelbrot double complex fractal set (c1x = c2x = −0.7454294)

The last example is given by a Julia-Mandelbrot-Mandelbrot obtained setting the parameters
c1x = c2x = −0.7454294 and varying c1y, c2y.

POV-Ray 3.7 code to generate figs 40, 41 and 42

//==========================================================

// Double complex 3D Julia-Mand-Mand (c = -0.7454294) set

// as a whole (POV-Ray point by point generation)

//==========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare Nr = 20; // Nr = 40

#declare Th = -45;

#declare Ph = 150;

#declare X1 = 0;

#declare X2 = 0;

#declare Y1 = 0;

#declare Y2 = 0;

#declare Cx = -0.7454294;

union{ #for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment
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Fig.40 - POV 3.7 double complex 3D Julia-Mandelbrot-Mandelbrot set
as a whole (point by point generation)

Fig.41 - POV 3.7 Open section of a 3D double complex Julia-Mandelbrot-Mandelbrot (c = −0.7454294) set
as a whole (point by point generation)
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Fig.42 - Cartesian plane sections of the POV 3.7 3D double complex Julia-Mandelbrot-Mandelbrot set
(c = −0.7454294) as a whole (point by point generation)

#declare X1 = IncX; // start Julia1

#declare X2 = IncX; // start Julia2

#declare Y1 = 0; // start Mand1

#declare Y2 = 0; // start Mand2

#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + Cx; // cycle Julia1

#declare XX2 = X2*X2 - Y2*Y2 + Cx; // cycle Julia2

#declare YY1 = 2*X1*Y1 + IncY1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + IncY2; // cycle Mand2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

rotate < 0, Th, Ph >

translate < 0, -15, -5 >}



Chapter 6 –Three-dimensional fractals form quaternions and hypercomplex numbers 203

6.3.2 Generalized 3D double complex fractals generated sequentially

Mandelbrot-Mandelbrot-Mandelbrot double complex fractal set

Now it is time to consider the double complex Mandelbrot and Julia fractals generated se-
quentially. Here are the codes and resulting pictures.

POV-Ray 3.7 code to generate figs 43 and 44

//=========================================================

// Double complex 3D Mand-Mand-Mand fractal set

// generated sequentially (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare ns = 75;

#declare st = 1;

#declare Nr = 20; // Nr = 40

#declare Th = -45;

#declare Ph = 30;

#declare X1 = 0;

#declare X2 = 0;

#declare Y1 = 0;

#declare Y2 = 0;

union{ #for (p, -ns, ns, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -ns, ns, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -ns, ns, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment
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Fig.43 - POV 3.7 3D double complex Mandelbrot-Mandelbrot-Mandelbrot set generated sequentially
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Fig.44 - POV 3.7 3D Open section of a double complex
Mandelbrot-Mandelbrot-Mandelbrot set generated sequentially
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#declare X1 = 0; // start Mand1

#declare X2 = 0; // start Mand1

#declare Y1 = 0; // start Mand1

#declare Y2 = 0; // start Mand2

#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + IncX; // cycle Mand1

#declare XX2 = X2*X2 - Y2*Y2 + IncX; // cycle Mand1

#declare YY1 = 2*X1*Y1 + IncY1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + IncY2; // cycle Mand2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 80, -10, 0 >

rotate < 0, Th, Ph > }

Julia-Julia-Julia double complex fractal sets (c1 = c2 = −0.7454294)

Here is a Julia-Julia-Julia double complex fractal set (c1 = c2 = −0.7454294).

POV-Ray 3.7 code to generate figs 45 and 46

//=========================================================

// Double complex 3D Julia-Julia-Julia fractal set

// ($c_{1} = c_{2} = -0.7454294$$) generated sequentially

// (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>
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Fig.45 - POV 3.7 3D double complex Julia-Julia-Julia set (C = −0.7454294)
generated sequentially
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Fig.46 - POV 3.7 3D open section of a double complex Julia-Julia-Julia set
(C = −0.7454294) generated sequentially
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}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare ns = 50;

#declare st = 1;

#declare Nr = 20; // Nr = 40

#declare Th = -30;

#declare Ph = 30;

#declare X1 = 0;

#declare X2 = 0;

#declare Y1 = 0;

#declare Y2 = 0;

#declare Cx1 = -0.7454294;

#declare Cx2 = -0.7454294;

#declare Cy1 = 0;

#declare Cy2 = 0;

union{ #for (p, -ns, ns, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -ns, ns, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -ns, ns, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment

#declare X1 = IncX; // start Mand1

#declare X2 = IncX; // start Mand1

#declare Y1 = IncY1; // start Mand1

#declare Y2 = IncY2; // start Mand2

#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + Cx1; // cycle Mand1

#declare XX2 = X2*X2 - Y2*Y2 + Cx2; // cycle Mand1

#declare YY1 = 2*X1*Y1 + Cy1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + Cy2; // cycle Mand2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {
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pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 80, -10, 0 >

rotate < 0, Th, Ph > }

Julia-Julia-Julia “sea-horse” double complex fractal set (c1 = c2 = −0.7454294 +
i0.113089)

Here is also the Julia-Julia-Julia “sea horse” double complex fractal set (c1 = c2 = −0.7454294+
i0.113089).

POV-Ray 3.7 code to generate figs 47 and 48

//=========================================================

// Double complex 3D Julia-Julia-Julia ‘‘sea-horse’’ fractal set

// ($c_{1} = c_{2} = -0.7454294 + i 0.113089$$) generated sequentially

// (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare ns = 100;

#declare st = 1;

#declare Nr = 20; // Nr = 40
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Fig.47 - POV 3.7 3D Double complex “sea horse” Julia-Julia-Julia set (c1 = c2 = −0.7454294 + i0.113089)
generated sequentially
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Fig.48 - POV 3.7 3D open section of a Double complex “sea horse” Julia-Julia-Julia set
(c1 = c2 = −0.7454294 + i0.113089) generated sequentially
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#declare Th = -10;

#declare Ph = 30;

#declare X1 = 0;

#declare X2 = 0;

#declare Y1 = 0;

#declare Y2 = 0;

#declare Cx1 = -0.7454294;

#declare Cx2 = -0.7454294;

#declare Cy1 = 0.113089;

#declare Cy2 = 0.113089;

union{ #for (p, -ns, ns, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -ns, ns, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -ns, ns, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment

#declare X1 = IncX; // start Mand1

#declare X2 = IncX; // start Mand1

#declare Y1 = IncY1; // start Mand1

#declare Y2 = IncY2; // start Mand2

#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + Cx1; // cycle Mand1

#declare XX2 = X2*X2 - Y2*Y2 + Cx2; // cycle Mand1

#declare YY1 = 2*X1*Y1 + Cy1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + Cy2; // cycle Mand2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if ( W > R) // escape if

#if (W < R + 0.03) // escape if

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

}

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

translate < 30, -20, 0 >

rotate < 0, Th, Ph > }
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6.3.3 Generalized 3D double complex fractal sets generated randomly

The last step of this chapter is concerned with random generation process of double complex
3D generalized Mandelbrot, Julia and mixed fractal sets.

Mandelbrot-Mandelbrot-Mandelbrot quaternion fractal set

As usual we begin with Mandelbrot-Mandelbrot-Mandelbrot set.

POV-Ray 3.7 code to generate figs 49 and 50

//=========================================================

// Double complex 3D Mand-Mand-Mand set generated randomly

// (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare Nr = 20; // Nr = 40

#declare Th = -45;

#declare Ph = 30;

#declare X1 = 0;

#declare X2 = 0;

#declare Y1 = 0;

#declare Y2 = 0;

#declare K = array[2*n+1][2*n+1][2*n+1]; // escape rate 3D matrix

#for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)
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Fig.49 - POV 3.7 3D Double complex Mandelbrot-Mandelbrot-Mandelbrot set generated randomly
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Fig.50 - POV 3.7 3D Open section of a double complex Mandelbrot-Mandelbrot-Mandelbrot set
generated randomly
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#declare IncY2 = r*L/n; // Mand2 Y2 increment

#declare X1 = 0; // start Mand1

#declare X2 = 0; // start Mand1

#declare Y1 = 0; // start Mand1

#declare Y2 = 0; // start Mand2

#declare K[p+n][q+n][r+n] = 0;

#for (k,0,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + IncX; // cycle Mand1

#declare XX2 = X2*X2 - Y2*Y2 + IncX; // cycle Mand1

#declare YY1 = 2*X1*Y1 + IncY1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + IncY2; // cycle Mand2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

union{ #for(j,0,n*n*n/4) // partial values n*n*n,

n*n*n/4, n*n*n/32, n*n*n/64

#declare p = int(2*n*rand(Rnd_1));

#declare q = int(2*n*rand(Rnd_2));

#declare r = int(2*n*rand(Rnd_3));

#if(K[p][q][r] > 0)

sphere {

< -n+p, -n+q, -n+r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

translate < 80, -10, 0 >

rotate < 0, Th, Ph > }

#end // end if

#end} // end for j

Julia-Julia-Julia double complex fractal set (c1 = c2 = −0.745429)

As a second example we show a Julia-Julia-Julia double complex fractal set the parameters
of which are given by c1 = c2 = −0.745429.
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POV-Ray 3.7 code to generate figs 51 and 52

//=========================================================

// Double complex 3D Julia-Julia-Julia set (c1 = c2 = -0.745429)

// generated randomly (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare Nr = 20; // Nr = 40

#declare Th = -30;

#declare Ph = 30;

#declare X1 = 0;

#declare X2 = 0;

#declare Y1 = 0;

#declare Y2 = 0;

#declare Cx1 = -0.7454294;

#declare Cx2 = -0.7454294;

#declare Cy1 = 0;

#declare Cy2 = 0;

#declare K = array[2*n+1][2*n+1][2*n+1]; // escape rate 3D matrix

#for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment

#declare X1 = IncX; // start Mand1

#declare X2 = IncX; // start Mand1
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Fig.51 - POV 3.7 3D Double complex Julia-Julia-Julia set (c1 = c2 = −0.745429)
generated randomly
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Fig.52 - POV 3.7 3D Open section of a double complex Julia-Julia-Julia set
(c1 = c2 = −0.745429) generated randomly
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#declare Y1 = IncY1; // start Mand1

#declare Y2 = IncY2; // start Mand2

#declare K[p+n][q+n][r+n] = 0;

#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + Cx1; // cycle Mand1

#declare XX2 = X2*X2 - Y2*Y2 + Cx2; // cycle Mand1

#declare YY1 = 2*X1*Y1 + Cy1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + Cy2; // cycle Mand2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

union{ #for(j,0,n*n*n/4) // partial values n*n*n*4, n*n*n/4, n*n*n/32, n*n*n/64

#declare p = int(2*n*rand(Rnd_1));

#declare q = int(2*n*rand(Rnd_2));

#declare r = int(2*n*rand(Rnd_3));

#if(K[p][q][r] > 0)

sphere {

< -n+p, -n+q, -n+r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

translate < 80, -10, 0 >

rotate < 0, Th, Ph > }

#end // end if

#end} // end for j

Julia-Mandelbrot-Mandelbrot double complex fractal set (c1x = c2x = −0.7454294)

The last example is a Julia-Mandelbrot-Mandelbrot obtained setting the parameters
c1x = c2x = −0.7454294 and varying c1y, c2y generated starting from random initial con-
ditions.
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POV-Ray 3.7 code to generate figs 53 and 54

//=========================================================

// Double complex 3D Julia-Mand-Mand set (c1x = c2x = 0.745429)

// generated randomly (POV-Ray point by point generation)

//=========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera { // set view point (camera) location

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source { // set point light sources location

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1;

#declare Nr = 20; // Nr = 40

#declare Th = -45;

#declare Ph = 150;

#declare X1 = 0;

#declare X2 = 0;

#declare Y1 = 0;

#declare Y2 = 0;

#declare Cx = -0.7454294;

#declare K = array[2*n+1][2*n+1][2*n+1]; // escape rate 3D matrix

#for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment

#declare X1 = IncX; // start Julia1

#declare X2 = IncX; // start Julia2

#declare Y1 = 0; // start Mand1

#declare Y2 = 0; // start Mand2

#declare K[p+n][q+n][r+n] = 0;
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Fig.53 - POV 3.7 3D Double complex Julia-Mandelbrot-Mandelbrot set (c1x = c2x = 0.745429)
generated randomly
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Fig.54 - POV 3.7 3D Open section of a double complex Julia-Mandelbrot-Mandelbrot set
(c1x = c2x = 0.745429) generated randomly



#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + Cx; // cycle Julia1

#declare XX2 = X2*X2 - Y2*Y2 + Cx; // cycle Julia2

#declare YY1 = 2*X1*Y1 + IncY1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + IncY2; // cycle Mand2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if ( W > R) // escape if

#if (W < R + 0.02) // escape if

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

union{ #for(j,0,n*n*n/4) // partial values n*n*n*4, n*n*n, n*n*n/4, n*n*n/32

#declare p = int(2*n*rand(Rnd_1));

#declare q = int(2*n*rand(Rnd_2));

#declare r = int(2*n*rand(Rnd_3));

#if(K[p][q][r] > 0)

sphere {>

< -n+p, -n+q, -n+r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

rotate < 0, Th, Ph >

translate < 0, -15, -5 >}

#end // end if

#end} // end for j
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Chapter 7

Fractal structures from cellular
automata
Rendering random processes

7.1 Introduction

Biological living systems are organized ordered structures which arise and develop according
to cell reproduction. A process which requires spatial contiguity between generating and
generated cells. An interesting drastic simplified model scheme of contiguity generation (and
possible suppression) processes is offered by cellular automata,1 which operate under the
following assumptions.

– Each cell is represented schematically as a point, or a disk, or a box in a 2D cellular
automaton, or a small sphere or cube in 3D, disregarding any internal structure.

– Each cell is allowed to occupy a single place within a grid covering some region of plane
or space.

– A rule (law) is assigned to each cell according to which it is allowed to generate another
cell in a specific contiguous place and not elsewhere. Moreover also a second rule may
be stated according to which an existing cell can survive or not (or assume a special
state among a set of admissible ones) in the next step of the process.

– The initial conditions: number and position of the starting cell(s) may be assigned or
random and the law governing the process generation is allowed to involve even random
numbers.

White color on a black background denotes alive cells, while black color denotes no cell
or a dead cell. More colors may be introduced to denote more possible states of a cell.

1The idea of firstly conceiving cellular automata is commonly attributed to Stanis law Ulam and John
von Neumann. It was proposed in 1948. Later Stephen Wolfram applied the same idea in its more re-
cent fascinating book A new kind of science (www.wolframscience.com/nks/). For more details see, e.g.,
natureofcode.com/book/chapter-7-cellular-automata/.
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http://www.wolframscience.com/nks/
https://natureofcode.com/book/chapter-7-cellular-automata/


228 A. Strumia, Information as order hidden within chance

Fig.1 - Examples of cellular automata

VIEW ANIMATION 1 (requires internet connection) VIEW ANIMATION 2

Among the most famous computer dedicated software to program cellular automata, we
must mention Golly2 which operates assigning the generating new cells according to a suitable
code of instructions which will not be discussed here. And among the cellular automata one
of the most known is The game of life (by John Conway) the name of which suggests, by
itself, some application to a biological context.

Even if it was originally created as a game for recreation, it revealed later some rele-
vance for possible mathematical applications to more serious models of scientific interest.
Notwithstanding it is based on very simple rules of generation/cancellation of cells it is able
to produce unpredictable configurations, depending on the initial conditions choice.

The elementary rules are the following.

1. If a cell is white (alive) it will become black (dead) if and only if

(a) it has four or more white neighbors;

(b) it has one or fewer white neighbors.

2. If a cell is black (dead) it will come white (alive) if it has precisely three white neighbors.

On July 2018 the 3.2 version of Golly was released which implements also a first script
allowing to test 3D cellular automata (see fig. 3). Of course a more impressive effect appears
when one looks at a movie showing the dynamical behavior of the automata which blink
continuously from black to white or colors and viceversa.

2Golly is an open source software which may be downloaded for several platforms either as a compiled
binary or as a source code (golly.sourceforge.net).

http://albertostrumia.it/sites/default/files/Animations/Coagulations.m4v
http://albertostrumia.it/sites/default/files/Animations/MeteorGuns.m4v
http://golly.sourceforge.net
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Fig.2 - The Game of life elementary rules

Fig.3 - Generation steps of a 3D cellular automaton (Golly 3.2)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/Golly3D.m4v
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7.2 Fractals generated randomly by cellular automata

In the present chapter we are interested to apply the methods of cellular automata to the
generation of fractal structures according to a random process. Instead of plotting each
fractal image choosing each test point in a totally random way, any point will be generating
randomly with a contiguity constraint like a contiguous cell of an automaton. The rule in
order to decide if a nearby point is alive and which is its color will be decided by the respective
fractal generation law, like, e.g., zn+1 = z2n + c for Mandelbrot and Julia sets. In order to
reach our goal we will suitably adapt the Python 3 and POV-Ray 3.7 codes presented in the
previous chapters.

7.2.1 2D Mandelbrot, Julia and Newton’s method sets generated randomly
by cellular automata

We can implement a Python 3.7 algorithm for cellular automata generating Mandelbrot, Julia
and Newton’s method two-dimensional fractals according to the following strategy.3

– The generation process starts by choosing a random initial cell (plot as a small square
or a small disk) in some point of a plane area.

– The recursion cycle, typical of the fractal one likes to build, is applied to the co-ordinates
of the chosen point, in order to evaluate the related escape rate.

– A cell is painted, centered in the same point, the color of which corresponds, according
to some color map, to the escape rate.

– A new point is chosen randomly near to the previous one, so that the cell centered in
that point results contiguous to the previous cell. The allowed positions of the cells are
determined by a suitable grid on the plane. The more refined is the grid, the higher
the resolution of the image will result.

We will begin considering 2D fractal examples and later 3D fractals.

Python 3 codes to generate Figs 4, 5 and 6

##########################################################

# 2D Mandelbrot set generation by a cellular automaton

# (graphics module)

#########################################################

# mod graphics in /Users/strumia/Library/Python/3.6/site-packages/graphics/

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import * # import graphics module

Radius = 10 # set escape rate threshold

3The algorithm can be improved in order to avoid that an already plotted cell is plotted again, but such a
condition will render the code more complicated and perhaps not so much faster.
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Fig.4 - Rough scheme of a cellular automaton randomly generating a Mandelbrot set

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/MandelbrotRDCA.m4v
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Fig.5 - Rough scheme of a cellular automaton randomly generating a Julia set (c = 0.7454294)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/JuliaRDCA.m4v
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Fig.6 - Rough scheme of a cellular automaton randomly generating a Newton’s method set [f(z) = z6 + 1]

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/NewtonRDCA.m4v
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Cx = .5 # set initial x parameter shift

Cy = 0.0 # set initial y parameter shift

Side = 1.3 # set square area side

M = 300 # set side number of elementary squares

N = 1 # set color map scale factor

Num = 256*N # set number of cycles

sT=5 # set step jump

w = 0 # set starting escape modulus value

import random # import random module

p = M/2+random.randrange(-M/2,M/2)

q = M/2+random.randrange(-M/2,M/2)

win = GraphWin("Mandelbrot set",int(5*M/3),int(5*M/3))

def rectCol(p,q,w):

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),

Point(int(p+sT/2),int(q+sT/2)))

Rect.draw(win).setFill(color_rgb(int(10*w%255),

int((128-10*w)%255),int((128+10*w)%255)))

i = 1 # set non-zero index value

while i > 0: # set random co-ordinates choice cycles

p = p+random.randrange(-1,2)*sT

q = q+random.randrange(-1,2)*sT

if p < 0:

p = p+2

elif p > M:

p = p-2

if q < 0:

q = q+2

elif q > M:

q = q-2

Incx = Cx - Side + 2*Side/M*q

Incy = Cy - Side + 2*Side/M*p

x = 0.0

y = 0.0

w = 0

for n in range(1,Num):

xx = x*x - y*y - Incx

yy = 2*x*y - Incy

x = xx

y = yy

if x*x + y*y > Radius: # escape rate condition

w = n/N

rectCol(int(M/3+q),int(M/3+p),int(w))

break

win.getMouse()

win.close()

##################################################################

# 2D Julia set generation by a cellular automaton (c = 0.7454294)

# (graphics module)

##################################################################

# mod graphics in /Users/strumia/Library/Python/3.6/site-packages/graphics/

import sys
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sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import * # import graphics module

Radius = 30 # set escape rate threshold

Cx = 0.7454294 # set c parameter real part value

Cy = 0.0 # set c parameter real part value

Side = 1.7 # set square area side

M = 300 # set side number of elementary squares

N = 1 # set color map scale factor

Num = 256*N # set number of cycles

sT=5 # set step jump

w = 0 # set starting escape modulus value

x = 0.0 #set x co-ordinate initial value

y = 0.0 #set y co-ordinate initial value

import random # import random module

p = M/2+random.randrange(-M/2,M/2)

q = M/2+random.randrange(-M/2,M/2)

win = GraphWin("Julia set", int(5*M/3),int(5*M/3))

def rectCol(p,q,w):

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),

Point(int(p+sT/2),int(q+sT/2)))

Rect.draw(win).setFill(color_rgb(int(10*w%255),

int((128-10*w)%255),int((128+10*w)%255)))

# Alternative values Cx 0.1747, 0.1747 Cy -.072,-1.072

# Side 0.0015, 0.00015 Num 1024

i = 1 # set non-zero index value

while i > 0: # set random co-ordinates choice cycles

p = p+random.randrange(-1,2)*sT

q = q+random.randrange(-1,2)*sT

if p < 0:

p = p+2

elif p > M:

p = p-2

if q < 0:

q = q+2

elif q > M:

q = q-2

Incx = - Side + 2*Side/M*q

Incy = - Side + 2*Side/M*p

x = Incx

y = Incy

w = 0

for n in range(1,Num):

xx = x*x - y*y - Cx

yy = 2*x*y - Cy

x = xx

y = yy

if x*x + y*y > Radius: # escape rate condition

w = n/N

rectCol(int(M/3+q),int(M/3+p),int(w))

break

win.getMouse()

win.close()
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###############################################################

# 2D Newton’s method set generation by a cellular automaton

# (graphics module)

###############################################################

# mod graphics in /Users/strumia/Library/Python/3.6/site-packages/graphics/

import sys

sys.path.append("/Users/strumia/Library/Python/3.6/site-packages/graphics/")

from graphics import * # import graphics module

Radius = .5 # set escape rate threshold

Cx = 0.0 # set initial x parameter shift

Cy = 0.0 # set initial y parameter shift

Side = .8 # set square area side

M = 300 # set side number of elementary squares

N = 1 # set color map scale factor

Num = 256*N # set number of cycles

sT= 5 # set step jump

w = 0 # set starting escape modulus value

import random # import random module

p = M/2+random.randrange(-M/2,M/2)

q = M/2+random.randrange(-M/2,M/2)

win = GraphWin("Mandelbrot set", int(5*M/3),int(5*M/3))

def rectCol(p,q,w):

Rect = Rectangle(Point(int(p-sT/2),int(q-sT/2)),

Point(int(p+sT/2),int(q+sT/2)))

Rect.draw(win).setFill(color_rgb(int(10*w%255),

int((128-10*w)%255),int((128+10*w)%255)))

i = 1 # set non-zero index value

while i > 0: # set random co-ordinates choice cycles

p = p+random.randrange(-1,2)*sT

q = q+random.randrange(-1,2)*sT

if p < 0:

p = p+2

elif p > M:

p = p-2

if q < 0:

q = q+2

elif q > M:

q = q-2

Incx = - Side + 2*Side/M*q

Incy = - Side + 2*Side/M*p

x = Incx

y = Incy

w = 0

for n in range(1,Num):

xx = 5*x/6.0 - x*(x*x*x*x - 10*x*x*y*y +5*y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0

yy = 5*y/6.0 + y*(5*x*x*x*x - 10*x*x*y*y + y*y*y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/(x*x+y*y)/6.0

x = xx

y = yy

if (x-Cx)*(x-Cx) + (y-Cy)*(y-Cy) < Radius: # escape rate condition

w = n/N

rectCol(int(M/3+q),int(M/3+p),int(w))
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win.getMouse()

win.close()

7.2.2 3D Mandelbrot and Julia sets generated randomly by cellular au-
tomata

Generation of 3D fractals by cellular automata implementing a POV-Ray 3.7 code requires
some care. In fact, the code, needs to test sequentially first of all if each point in a suitable
interval of 3D space belongs the fractal set or it does not, so obtaining a 3D matrix a values.
Then the co-ordinates of each point belonging to the fractal set have to be extracted starting
from an initial condition (e.g., the origin of the 3D interval), in such a way that each point
is contiguous to the previous one. In other words the difference between each co-ordinate of
the (n+ 1)-th point from the co-ordinates of the n-th point is either ±1 or 0.

Cellular automata generating quaternion fractal sets

The following images show, each one, six steps of generation of respectively:

– 3D quaternion Mandelbrot-Mandelbrot-Mandelbrot fractal set

– 3D quaternion Julia-Julia-Julia fractal set (C = -0.7454294)

– 3D quaternion Julia-Mandelbrot-Mandelbrot fractal set (C = -0.7454294)

The related POV-Ray 3.7 code is also provided.

Pov-Ray 3.7 codes to generate figs 7, 8, 9

//==========================================================

// 3D quaternion Mandelbrot-Mandelbrot-Mandelbrot set generation

// by a cellular automaton (POV-Ray 3.7)

//==========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera {

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source {

< -20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {
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Fig.7 - POV 3.7 3D Quaternion Mandelbrot-Mandelbrot-Mandelbrot set
generated by a cellular automaton

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/MandMandMandQTCA.m4v
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< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 3.0

}

#declare R = 0.1; // set radius value

#declare L = 2; // set square area side

#declare n = 200; // set number of pixels per area side

#declare st = 1; // set increment step

#declare N = 40; // set number of cycles

#declare Th = -45; // set rotation angles

#declare Ph = 30;

#declare K = array[2*n+1][2*n+1][2*n+1]; // escape rate 3D matrix

#for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)

#declare IncZ = r*L/n; // Mand2 Y2 increment

#declare X = 0; // start MandX

#declare Y = 0; // start MandY

#declare Z = 0; // start MandZ

#declare K[p+n][q+n][r+n] = 0;

#for (k,0,N)

#declare XX = X*X - Y*Y - Z*Z + IncX; // cycle MandX

#declare YY = 2*X*Y + IncY; // cycle MandY

#declare ZZ = 2*X*Z + IncZ; // cycle MandZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

caption(W < R) // escape if 0.0015

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

#declare pp = 0;

#declare qq = 0;

#declare rr = 0;

union{

#for(j,0,pow(n,3)) // partial values n*n/4, n*n, n*n*n/64, n*n*n/16, n*n*n

#declare p = pp + st*pow(-1,int(n*rand(Rnd_1)));

#declare q = qq + st*pow(-1,int(n*rand(Rnd_2)));

#declare r = rr + st*pow(-1,int(n*rand(Rnd_3)));

#if ( abs(p) < n)

#if( abs(q) < n)

#if (abs(r) < n)

#if(K[p+n][q+n][r+n] > 0)

#declare pp = p;

#declare qq = q;

#declare rr = r;

sphere {
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< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

translate < 30, 15, 0 >

rotate < 0, Th, Ph > }

#end // end if

#end // end if

#end // end if

#end // end if

//==========================================================

// 3D quaternion Julia-Julia-Julia set generation

// by a cellular automaton (POV-Ray 3.7)

//==========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera {

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source {

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .5; // set radius value

#declare L = 2; // set square area side

#declare n = 150; // set number of pixels per area side

#declare st = 1; // set increment step

#declare Nr = 30; // set number of cycles

#declare Th = 0; // set rotation angles

#declare Ph = 30;

#declare Cx = -0.7454294; // JuliaX parameter

#declare Cy = 0; // JuliaY parameter

#declare Cz = 0; // JuliaZ parameter

#declare K = array[2*n+1][2*n+1][2*n+1]; // escape rate 3D matrix

#for (p, -n, n, st)

#declare IncX = p*L/n; // JuliaX increment

#for (q, -n, n, st)

#declare IncY = q*L/n; // JuliaY increment

#for (r, -n, n, st)

#declare IncZ = r*L/n; // JuliaZ increment
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Fig.8 - POV 3.7 3D Quaternion Julia-Julia-Julia set
generated by a cellular automaton

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/JuliaJuliaJuliaQTCA.m4v
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#declare X = IncX; // start JuliaX

#declare Y = IncY; // start JuliaY

#declare Z = IncZ; // start JuliaZ

#declare K[p+n][q+n][r+n] = 0;

#for (k,0,Nr)

#declare XX = X*X - Y*Y - Z*Z + Cx; // cycle JuliaX

#declare YY = 2*X*Y + Cy; // cycle JuliaY

#declare ZZ = 2*X*Z + Cz; // cycle JuliaZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if (W < R) // escape if

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

#declare pp = 0;

#declare qq = 0;

#declare rr = 0;

union{ #for(j,0,n*n*n/16) // partial n*n/4, n*n, n*n*n/64, n*n*n/16, n*n*n

#declare p = pp + st*pow(-1,int(n*rand(Rnd_1)));

#declare q = qq + st*pow(-1,int(n*rand(Rnd_2)));

#declare r = rr + st*pow(-1,int(n*rand(Rnd_3)));

#if ( abs(p) < n)

#if( abs(q) < n)

#if (abs(r) < n)

#if(K[p+n][q+n][r+n] > 0)

#declare pp = p;

#declare qq = q;

#declare rr = r;

sphere {

< p, q, r >, 1

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

translate < 0, -10, 0 >

rotate < 0, Th, Ph > }

#end // end if

#end // end if

#end // end if

#end // end if

#end} // end for j
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//==========================================================

// 3D quaternion Julia-Mandelbrot-Mandelbrot (C = -0.7454294)

// set generation by a cellular automaton (POV-Ray 3.7)

//==========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera {

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source {

< -20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 30, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 3.0

}

#declare R = .5; // set radius value

#declare L = 2; // set square area side

#declare Cx = -0.7454294;

#declare Cz = 0;

#declare n = 150; // set number of pixels per area side

#declare st = 1; // set increment step

#declare N = 40; // set number of cycles

#declare Th = -45; // set rotation angles

#declare Ph = 30;

#declare K = array[2*n+1][2*n+1][2*n+1]; // escape rate 3D matrix

#for (p, -n, n, st)

#declare IncX = p*L/n; // Julia X increment

#for (q, -n, n, st)

#declare IncY = q*L/n; // Mand Y increment

#for (r, -n, n, st)

#declare IncZ = r*L/n; // Julia Y increment

#declare X = IncX; // start JuliaX

#declare Y = 0; // start MandY

#declare Z = 0; // start MandZ

#declare K[p+n][q+n][r+n] = 0;

#for (k,1,N)

#declare XX = X*X - Y*Y - Z*Z + Cx; // cycle JuliaX

#declare YY = 2*X*Y + IncY; // cycle MandY

#declare ZZ = 2*X*Z + IncZ; // cycle JuliaZ

#declare X = XX;

#declare Y = YY;

#declare Z = ZZ;

#declare W = X*X +Y*Y + Z*Z;

#if (W < R) // escape if

#declare K[p+n][q+n][r+n] = k;
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Fig.9 - POV 3.7 3D Quaternion Julia-Mandelbrot-Mandelbrot set
set (C = -0.7454294) generated by a cellular automaton
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#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

#declare pp = 0;

#declare qq = 0;

#declare rr = 0;

// repalce n*n*n/8 by n*n*n/8*clock for animation

union{#for(j,0,n*n*n/8) // partial values n*n/4, n*n/2, n*n, n*n*n/64,

n*n*n/8, n*n*n

#declare p = pp + st*pow(-1,int(n*rand(Rnd_1)));

#declare q = qq + st*pow(-1,int(n*rand(Rnd_2)));

#declare r = rr + st*pow(-1,int(n*rand(Rnd_3)));

#if ( abs(p) < n)

#if( abs(q) < n)

#if (abs(r) < n)

#if(K[p+n][q+n][r+n] > 0)

#declare pp = p;

#declare qq = q;

#declare rr = r;

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

translate < 30, 15,10 >

rotate < Th, Th, Ph > }

#end // end if

#end // end if

#end // end if

#end // end if

#end} // end for j

Cellular automata generating double complex fractal sets

The further following images show, each one, six steps of generation of respectively:

– 3D double complex Mandelbrot-Mandelbrot-Mandelbrot fractal set

– 3D double complex Julia-Julia-Julia fractal set (c1x = c2x = −0.7454294)

– 3D double complex Julia-Mandelbrot-Mandelbrot fractal set (cx = −0.7454294)

And the related POV-Ray 3.7 code is also given.
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Fig.10 - POV 3.7 3D Doble complex Mandelbrot-Mandelbrot-Mandelbrot set
generated by a cellular automaton

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/MandMandMandZZCA.m4v


Chapter 7 –Fractal structures from cellular automata 247

Pov-Ray 3.7 codes to generate figs 10, 11, 12

//==========================================================

// 3D double complex Mandelbrot-Mandelbrot-Mandelbrot set generation

// by a cellular automaton (POV-Ray 3.7)

//==========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera {

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source {

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = 0.5; // set radius value

#declare L = 2; // set square area side

#declare X1 = 0; // set co-ordinates x initial value

#declare X2 = 0;

#declare Y1 = 0; // set co-ordinates y initial value

#declare Y2 = 0;

#declare n = 150; // set number of pixels per area side

#declare st = 1; // set increment step

#declare Nr = 20; // set number of cycles

#declare Th = -45; // set rotation angles

#declare Ph = 30;

#declare K = array[2*n+1][2*n+1][2*n+1]; // escape rate 3D matrix

#for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment

#declare X1 = 0; // start Mand1

#declare X2 = 0; // start Mand1

#declare Y1 = 0; // start Mand1

#declare Y2 = 0; // start Mand2

#declare K[p+n][q+n][r+n] = 0;

#for (k,0,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + IncX; // cycle Mand1

#declare XX2 = X2*X2 - Y2*Y2 + IncX; // cycle Mand1

#declare YY1 = 2*X1*Y1 + IncY1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + IncY2; // cycle Mand2
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#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if (W < R) // escape if

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

#declare pp = 0;

#declare qq = 0;

#declare rr = 0;

// replace n*n*n by n*n*n*clock for animation

union{

#for(j,0,n*n) // partial values n*n/2, n*n, 2*n*n, 3*n*n, 4*n*n, 16*n*n, n*n*n

#declare p = pp + st*pow(-1,int(n*rand(Rnd_1)));

#declare q = qq + st*pow(-1,int(n*rand(Rnd_2)));

#declare r = rr + st*pow(-1,int(n*rand(Rnd_3)));

#if ( abs(p) < n)

#if( abs(q) < n)

#if (abs(r) < n)

#if(K[p+n][q+n][r+n] > 0)

#declare pp = p;

#declare qq = q;

#declare rr = r;

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

translate < 80, -10, 0 >

rotate < 0, Th, Ph > }

#end // end if

#end // end if

#end // end if

#end // end if

#end} // end for j



Chapter 7 –Fractal structures from cellular automata 249

Fig.11 - POV 3.7 3D Double complex Julia-Julia-Julia set (c1x = c2x = −0.7454294)
generated by a cellular automaton
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//========================================================

// 3D double complex Julia-Julia-Julia set

// (c1x = c2x = -0.7454294)

// generation by a cellular automaton (POV-Ray 3.7)

//========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera {

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source {

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .5; // set radius value

#declare L = 2; // set square area side

#declare X1 = 0; // set co-ordinates x initial value

#declare X2 = 0;

#declare Y1 = 0; // set co-ordinates y initial value

#declare Y2 = 0;

#declare Cx1 = -0.7454294;

#declare Cx2 = -0.7454294;

#declare Cy1 = 0;

#declare Cy2 = 0;

#declare n = 150; // set number of pixels per area side

#declare st = 1; // set increment step

#declare Nr = 20; // set number of cycles

#declare Th = -30; // set rotation angles

#declare Ph = 30;

#declare K = array[2*n+1][2*n+1][2*n+1]; // escape rate 3D matrix

#for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment

#declare X1 = IncX; // start Mand1

#declare X2 = IncX; // start Mand1

#declare Y1 = IncY1; // start Mand1

#declare Y2 = IncY2; // start Mand2

#declare K[p+n][q+n][r+n] = 0;

#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + Cx1; // cycle Mand1

#declare XX2 = X2*X2 - Y2*Y2 + Cx2; // cycle Mand1

#declare YY1 = 2*X1*Y1 + Cy1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + Cy2; // cycle Mand2
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#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if (W < R + 0.02) // escape if

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end for k

#end // end for q

#end // end for p

#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

#declare pp = 0;

#declare qq = 0;

#declare rr = 0;

union{ #for(j,0,2*n*n) // partial values n*n, 2*n*n, 3*n*n, 8*n*n, n*n*n/8, n*n*n

#declare p = pp + st*pow(-1,int(n*rand(Rnd_1)));

#declare q = qq + st*pow(-1,int(n*rand(Rnd_2)));

#declare r = rr + st*pow(-1,int(n*rand(Rnd_3)));

#if ( abs(p) < n)

#if( abs(q) < n)

#if (abs(r) < n)

#if(K[p+n][q+n][r+n] > 0)

#declare pp = p;

#declare qq = q;

#declare rr = r;

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

translate < 80, -10, 0 >

rotate < 0, Th, Ph > }

#end // end if

#end // end if

#end // end if

#end // end if

#end} // end for j

//==========================================================

// 3D double complex Julia-Mand-Mand set

// (c1x = c2x = -0.7454294)

// generation by a cellular automaton (POV-Ray 3.7)

//==========================================================

#include "colors.inc" // Standard Color definitions

#include "glass.inc" // Glass pigment effect

#include "metals.inc" // Metal pigment effect
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Fig.12 - POV 3.7 3D Double complex Julia-Mand-Mand set (c1x = c2x = −0.7454294)
generated by a cellular automaton
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global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera {

location <-20, 20, -300>

look_at <-5, 0, 0>

}

light_source {

< -50, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

light_source {

< 20, 20, -10>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#declare R = .5; // set radius value

#declare L = 2; // set square area side

#declare X1 = 0; // set co-ordinates x initial value

#declare X2 = 0;

#declare Y1 = 0; // set co-ordinates y initial value

#declare Y2 = 0;

#declare Cx = -0.7454294;

#declare n = 150; // set number of pixels per area side

#declare st = 1; // set increment step

#declare Nr = 20; // set number of cycles

#declare Th = -45; // set rotation angles

#declare Ph = 150;

#declare K = array[2*n+1][2*n+1][2*n+1]; // escape rate 3D matrix

#for (p, -n, n, st)

#declare IncX = p*L/n; // Mand1 X increment

#for (q, -n, n, st)

#declare IncY1 = q*L/n; // Mand1 Y1 increment

#for (r, -n, n, st)

#declare IncY2 = r*L/n; // Mand2 Y2 increment

#declare X1 = IncX; // start Julia1

#declare X2 = IncX; // start Julia2

#declare Y1 = 0; // start Mand1

#declare Y2 = 0; // start Mand2

#declare K[p+n][q+n][r+n] = 0;

#for (k,1,Nr)

#declare XX1 = X1*X1 - Y1*Y1 + Cx; // cycle Julia1

#declare XX2 = X2*X2 - Y2*Y2 + Cx; // cycle Julia2

#declare YY1 = 2*X1*Y1 + IncY1; // cycle Mand1

#declare YY2 = 2*X2*Y2 + IncY2; // cycle Mand2

#declare X1 = XX1;

#declare X2 = XX2;

#declare Y1 = YY1;

#declare Y2 = YY2;

#declare W = X1*X1 +X2*X2 +Y1*Y1 + Y2*Y2;

#if (W < R + 0.02) // escape if

#declare K[p+n][q+n][r+n] = k;

#end // end if

#end // end for k

#end // end for q

#end // end for p



#end // end for r

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

#declare pp = 0;

#declare qq = 0;

#declare rr = 0;

union{ #for(j,0,n*n/2) // partial values n*n/2, n*n, 2*n*n,

n*n*n/32, 16*n*n, n*n*n

#declare p = pp + st*pow(-1,int(n*rand(Rnd_1)));

#declare q = qq + st*pow(-1,int(n*rand(Rnd_2)));

#declare r = rr + st*pow(-1,int(n*rand(Rnd_3)));

#if ( abs(p) < n)

#if( abs(q) < n)

#if (abs(r) < n)

#if(K[p+n][q+n][r+n] > 0)

#declare pp = p;

#declare qq = q;

#declare rr = r;

sphere {

< p, q, r >, 1 // adding 3d axis

texture {

pigment { color Col_Glass_Yellow }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection .3

specular 1 } // plot sphere

rotate < 0, Th, Ph >

translate < 0, -15, -5 >}

#end // end if

#end // end if

#end // end if

#end // end if

#end} // end for j



Chapter 8

Heart structure models from
cellular automata
Sequential and random rendering processes

8.1 Introduction

All the previous chapters of our report are to be considered, in the same time, both as
autonomous – since each one is self-consistent – and as introductory to the present chapter. In
fact here we attempt an application of the previous methodology and results to biology. The
aim of the whole report is that of showing how ordered material systems (i.e., bodies of any
kind) can be modeled as attractors towards which simpler elementary structures (particles,
cells, etc.), even starting from random initial conditions, are driven by a suitable information
(law, or sequence of laws). So order appears to arise from chance, while some suitable
information is hidden within the random process itself.

In principle one could guess that the whole material universe may be modeled by a set
of nested attractors generating one from the other according to a non-completely stochastic
process. In the present chapter we will test, as an example, some models generating the
ordered structure of the external surface of a human heart. As we will see very rough models
can be obtained assigning a relatively compact mathematical law, while a more realistic model
seems to require to provide the uncompressed string of all the components of the structure,
as if the sequence of the respective numbers (co-ordinates of representative points of each
elementary component) were non-computable.

8.2 Python 3 rendering of a heart-like external structure

8.2.1 The heart as a whole

We will attack the problem of modeling a complex structure starting from a simpler one
of which we know a mathematical generating law. As a second step we will try to slightly

255
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modify the known law in order to obtain a structure which results to be more similar to the
required complex one. In order to observe the generation process of the complex structure
we will need not to build it instantly as a whole, but step by step, placing point after point,
or at least small parts after small parts.

Approaching a 2D heart profile (continuous paths)

We start with the simpler problem of approaching a 2D heart profile by modifying the
parametric equations of a circular path:

x = ±R sin θ, y = R cos θ, θ ∈ [0, π]. (8.1)

A negative exponential deformation factor for y seems to be enough for our purposes:

x = ±R sin θ, y = Re−aθ cos θ, θ ∈ [0, π]. (8.2)

where a is a suitable damping factor. The sequence of deformations is shown as overlapped
in fig. 1 and as separate images in fig. 2.

Fig.1 - Rough heart profile obtained by deformation of a circular path (a = 0÷ .3, overlapped profiles)

Python 3 codes to generate figs 1 and 2

########################################

# Heart 2D profile generation

# by deformation of a circular path

# overlapped images

# (matplotlib module)

########################################

import matplotlib as mpl

import numpy as np

import matplotlib.pyplot as plt
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Fig.2 - Rough heart profile obtained by deformation sequence (a = 0÷ .3, sequential deformation steps)
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r = 4.0

n = 100

theta = np.linspace(0.0, np.pi, n)

x = r * np.sin(theta)

y = r * np.cos(theta)

X1 = x + 0.0008*y*y

X2 = -x - 0.0008*y*y

Y = [0,0,0,0,0,0]

c = [’brown’,’blue’,’green’,’black’,’purple’,’red’]

fig = plt.figure(figsize=(4,4), dpi=100)

for k in range(6):

Y[k] = 2*r*np.cos(theta)*np.e**(-.3*(np.pi-theta)*k/6)

plt.axis(’off’)

plt.plot(X1, Y[k], c[k])

plt.plot(X2, Y[k], c[k])

# plt.plot(X1, Y[5], c[k])

# plt.plot(X2, Y[5], c[k])

plt.show()

#######################################

# Heart 2D profile generation

# by deformation of a circular path

# sequential images

# (matplotlib module)

#######################################

import matplotlib as mpl

import numpy as np

import matplotlib.pyplot as plt

r = 4.0

n = 100

theta = np.linspace(0.0, np.pi, n)

x = r * np.sin(theta)

y = r * np.cos(theta)

X1 = x + 0.0008*y*y

X2 = -x - 0.0008*y*y

for k in range(6):

Y = 2*r*np.cos(theta)*np.e**(-.3*(np.pi-theta)*k/6)

fig = plt.figure(figsize=(4,4), dpi=100)

plt.axis(’off’)

plt.plot(X1, Y, ’r’)

plt.plot(X2, Y, ’r’)

plt.show()

Approaching a 3D heart external surface (mesh plots)

Following a similar procedure we perform the passage from two to three dimensions.

a) In the case of a biological organ like a heart we could start, e.g., with a simple spherical
surface. In chapter?? we have seen how to model and render a spherical shell, e.g.,
recurring to parametric equations:
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x = R sin θ sinφ, y = R cos θ sinφ, z = R cosφ, (8.3)

as information (law) governing the process of its generation, starting from elementary
components like dots or tiny spheres.

b) A second step will be that of modifying the parametric equations of the sphere so that we
may obtain a suitable deformation of its surface, adapting its shape to a heart-like one.
Of course the result will be rough when very irrelevant modification are applied, while it
will be more refined if more appropriate changes will be imposed. Modified parametric
equations as the following will be enough suitable for our didactical purposes, even if,
of course, better ones can be found:1

x = ±R sin θ sinφ+ ay2,

y = ±bR cos θ sinφ, θ, φ ∈ [0, π],

z = cR cosφedφ.

(8.4)

Python 3 code to generate fig. 3

########################################

# Heart 3D shape generation

# by deformation of a spherical surface

# sequential mesh plots

# (matplotlib module)

########################################

from mpl_toolkits import mplot3d # imports 3D matplotlib modulus

import numpy as np

import matplotlib.pyplot as plt

r = 4.0

theta = np.linspace(0.0, 2*np.pi, 40)

phi = np.linspace(0.0, np.pi, 40)

theta, phi = np.meshgrid(theta, phi)

x = r * np.sin(theta)*np.sin(phi)

y = r * np.cos(theta)*np.sin(phi)

for k in range(6):

X = x + 0.0008*y*y*k/6

Y = y - .3*y*k/6

Z = 2*r*np.cos(phi)*np.e**(-.3*(np.pi-phi)*k/6)

fig = plt.figure(figsize=(4,4), dpi=100)

ax = plt.axes(projection=’3d’)

1An interesting challenge for the reader could be that of experiencing how to improve our equations.
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Fig.3 - Heart shape as a whole mesh plots obtained by deformation sequence of a sphere
(a = 0÷ .0008, b = 1÷ .7, c = 2, d = 0÷ .3)
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ax.set_xlim3d([-2.5, 2.5])

ax.set_ylim3d([-2.5, 2.5])

ax.set_zlim3d([-5.0*(1-k/24), 5.0*(1-k/24)])

ax.set_axis_off()

ax.plot_surface(X, Y, Z, cmap="gist_heat", edgecolor=’brown’)

plt.show()

c) A third step consists in obtaining a rendering of the heart-like structure by means of
small spots, resembling biological cells, instead of usual 3D plot meshes. The smaller
the spots are the more detailed and realistic the image results. Of course, in our model,
we cannot attain to the true biological scale of cells respect to the model extension,
since it would require so a huge number of dots that the computing time and power
would be enormous.

Fig.4 - Heart shape as a whole scatter plot sequence (n = 50, 100, 150 spots)

Python 3 code to generate fig. 4

########################################

# Heart 3D shape generation

# scatter (spot) image

# (matplotlib module)

########################################

from mpl_toolkits import mplot3d # imports 3D matplotlib modulus

import numpy as np

import matplotlib.pyplot as plt

r = 5.0

n = 150 #alternative 50, 100

theta = np.linspace(0.0, 2*np.pi, n)

phi = np.linspace(0.0, np.pi, n)

theta, phi = np.meshgrid(theta, phi)

x = r * np.sin(theta)*np.sin(phi)

y = r * np.cos(theta)*np.sin(phi)

z = r*np.cos(phi)
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X = x + 0.0008*y*y

Y = .7*y

Z = 2*z*np.e**(-.3*(np.pi-phi))

ax = plt.axes(projection=’3d’)

ax.set_xlim3d([-4.5, 4.5])

ax.set_ylim3d([-5.0, 5.0])

ax.set_zlim3d([-5.0, 4.0])

ax.set_axis_off()

C = np.arange(n*n)

ax.scatter(X, Y, Z, c=C, cmap = "gist_heat", marker="o",

edgecolor=[.3,.15,.2])

plt.show()

8.2.2 Sequential rendering of a heart-like model

Fig.5 - Heart shape as a whole scatter plot sequence
(vertical sections: n = 50, 100, 150 spots)
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Python 3 code to generate fig. 5

########################################

# Heart 3D scatter sequential generation

# vertical sections

# (matplotlib module)

########################################

from mpl_toolkits import mplot3d # imports 3D matplotlib modulus

import numpy as np

import matplotlib.pyplot as plt

r = 5.0

n = 150

theta = np.linspace(-np.pi, np.pi, n)

phi = np.linspace(0.0, np.pi, n)

theta, phi = np.meshgrid(theta, phi)

x = r * np.sin(theta)*np.sin(phi)

y = r * np.cos(theta)*np.sin(phi)

z = r*np.cos(phi)

X = x + 0.0008*y*y

Y = .7*y

Z = 2*z*np.e**(-.3*(np.pi-phi))

ax = plt.axes(projection=’3d’)

ax.set_xlim3d([-4.5, 4.5])

ax.set_ylim3d([-5.0, 5.0])

ax.set_zlim3d([-5.0, 4.0])

ax.set_axis_off()

C = np.arange(n*n)

for u in range(0,np.int(n/4),1): #alternative n/4, n/2, 3*n/4, n

for t in range(0,n,1):

ax.scatter(X[t,u], Y[t,u], Z[t,u], s = 12,

c = [1,.7*np.abs(np.cos(2*np.pi*(1+u/n))),

np.abs(np.sin(np.pi*(1+t/n)))], marker="o",

edgecolor=[.7,np.abs(t/255),np.abs(u/(300))] ,zorder=2)

plt.pause(0.001)

plt.show()

Python 3 code to generate fig. 6

########################################

# Heart 3D scatter sequential generation

# horizontal sections

# (matplotlib module)

########################################

from mpl_toolkits import mplot3d # imports 3D matplotlib modulus

import numpy as np
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Fig.6 - Heart shape as a whole scatter plot sequence
(horizontal sections: n = 50, 100, 150 spots)

import matplotlib.pyplot as plt

r = 5.0

n = 150

theta = np.linspace(-np.pi, np.pi, n)

phi = np.linspace(0.0, np.pi, n)

theta, phi = np.meshgrid(theta, phi)

x = r * np.sin(theta)*np.sin(phi)

y = r * np.cos(theta)*np.sin(phi)

z = r*np.cos(phi)

X = x + 0.0008*y*y

Y = .7*y

Z = 2*z*np.e**(-.3*(np.pi-phi))

ax = plt.axes(projection=’3d’)

ax.set_xlim3d([-4.5, 4.5])

ax.set_ylim3d([-5.0, 5.0])

ax.set_zlim3d([-5.0, 4.0])

ax.set_axis_off()

C = np.arange(n*n)
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for u in range(n-1,1,-1):

for u in range(1,n,1): #alternative 3*n/4, n/2, n/4, n

ax.scatter(X[u,t], Y[u,t], Z[u,t], s = 12,

c = [1,.7*np.abs(np.cos(2*np.pi*(1+u/n))),

np.abs(np.sin(np.pi*(1+t/n)))], marker="o",

edgecolor=[.7,np.abs(t/255),np.abs(u/(300))] ,zorder=2)

plt.pause(0.001)

plt.show()

8.2.3 Random rendering of a heart-like model

Fig.7 - Heart shape random scatter plot sequence

VIEW ANIMATION (requires internet connection)

Python 3 code to generate fig. 7

########################################

# Heart 3D scatter random generation

# (matplotlib module)

########################################

from mpl_toolkits import mplot3d # imports 3D matplotlib modulus

http://albertostrumia.it/sites/default/files/Animations/HeartShapeScattRD.m4v
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import numpy as np

import matplotlib.pyplot as plt

import random as rd

r = 6.0

n = 150

theta = np.linspace(-np.pi, np.pi, n)

phi = np.linspace(0.0, np.pi, n)

theta, phi = np.meshgrid(theta, phi)

x = r * np.sin(theta)*np.sin(phi)

y = r * np.cos(theta)*np.sin(phi)

z = r*np.cos(phi)

X = x + 0.0008*y*y

Y = .7*y

Z = 2*z*np.e**(-.3*(np.pi-phi))

ax = plt.axes(projection=’3d’)

ax.set_xlim3d([-4.5, 4.5])

ax.set_ylim3d([-5.0, 5.0])

ax.set_zlim3d([-6.0, 3.0])

ax.set_axis_off()

while r > 0:

t = np.random.choice(X.shape[0], 1, replace=False)

u = np.random.choice(Y.shape[1], 1, replace=False)

ax.scatter(X[t,u], Y[t,u], Z[t,u], s = 12,

c = [1,.7*np.abs(np.cos(2*np.pi*(1+u/n))),

np.abs(np.sin(np.pi*(1+t/n)))], marker="o",

edgecolor=[.7,np.abs(t/255),np.abs(u/(300))] ,zorder=2)

plt.pause(0.001)

plt.show()

8.2.4 Cellular automaton rendering of a heart-like model

A model attempting to describe, at least qualitatively, biological cell replication generating
(or regenerating) an organ like a heart, requires space contiguity between any replicant and
replicated cell. Therefore generically random replication cannot be suitable. Rather we
need recur to a cellular automata based scheme. So we will examine, now, a python 3 code
implementing an algorithm which generates a heart-like 3D structure:

– starting from an initial condition (cell co-ordinates) chosen by chance;

– replicating into a contiguous cell the position of which (co-ordinates) is shifted randomly
aside (xi → xi or xi → ±1, i = 1, 2, 3).

The figs 8 amd 9 show two examples obtained starting from a cell located respctivly in
two different initial positions chosen by chance. The information (law) driving the generation
process being the same set of parametric equations, in both examples, manifestly leads cells
to tend to the same structure (attractor).
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Fig.8 - Heart shape random cellular automaton plot (first example)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/HeartShapeScattCA1.m4v
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Fig.9 - Heart shape random cellular automaton plot (second example)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/HeartShapeScattCA2.m4v
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Python 3 code to generate figs 8 and 9

########################################

# Heart 3D scatter cellular automaton

# random generation

# (matplotlib module)

########################################

from mpl_toolkits import mplot3d # imports 3D matplotlib modulus

import numpy as np

import matplotlib.pyplot as plt

import random as rd

r = 6.0

n = 150

theta = np.linspace(0.0, 2*np.pi, n)

phi = np.linspace(0.0, np.pi, n)

theta, phi = np.meshgrid(theta, phi)

x = r * np.sin(theta)*np.sin(phi)

y = r * np.cos(theta)*np.sin(phi)

z = r*np.cos(phi)

X = x + 0.0008*y*y

Y = .7*y

Z = 2*z*np.e**(-.3*(np.pi-phi))

ax = plt.axes(projection=’3d’, aspect=.85)

ax.plot_wireframe(X, Y, Z, edgecolor=’pink’,zorder=1,alpha=0.08) # background trnaslucent image

ax.set_aspect=’equal’

ax.set_xlim3d([-4.5, 4.5])

ax.set_ylim3d([-5.0, 5.0])

ax.set_zlim3d([-6.5, 2.5])

ax.set_axis_off()

M = n

Step = 1

C = np.arange(n*n)

t = np.random.choice(X.shape[0], 1, replace=False)

u = np.random.choice(Y.shape[1], 1, replace=False)

while r > 0:

if t <= 0:

t = t + 2*Step

elif t >= M:

t = t - 2*Step

if u <= 0:

u = u + 2*Step

elif u >= M:

u = u - 2*Step

t = t + Step*(-1)**rd.randrange(0,2)

u = u + Step*(-1)**rd.randrange(0,2)

if t <= 0:
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t = t + 2*Step

elif t >= M:

t = t - 2*Step

if u <= 0:

u = u + 2*Step

elif u >= M:

u = u - 2*Step

ax.scatter(X[t,u], Y[t,u], Z[t,u], s = 12,

c = [1,.7*np.abs(np.cos(2*np.pi*(1+u/n))),

np.abs(np.sin(np.pi*(1+t/n)))], marker="o",

edgecolor=[.7,np.abs(t/255),np.abs(u/(300))] ,zorder=2)

plt.pause(0.001)

plt.show()

8.3 POV-Ray 3.7 rendering of a heart-like external structure

Rendering quality is significantly increased, also modeling an heart-like shape, while employ-
ing a ray tracing software as POV-Ray 3.7.

We now examine the results when the heart model

– either is built as a whole;

– or is generated by means of a random process;

– or as a cellular automaton.

We will examine all those approaches.

8.3.1 The heart as a whole

POV-Ray 3.7 code to generate figs 10

//======================================

// Heart 3D as a whole

// (POV-Ray 3.7 rendering)

//======================================

#include "colors.inc"

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera {

location <-20, 20, -250>

look_at < 0, 0, 0>

}

light_source {

< 20, 40, -120>

rgb <1.000000, 1.000000, 1.000000> * 4.0



Chapter 7 –Fractal structures from cellular automata 271

Fig.10 - Heart as a whole (POV-Ray 3.7 rendering)

}

#declare R = 60;

#declare n = 300;

#declare st = 1;

#declare S = 1; // scale factor

#declare Theta = -110;

#declare Phi = 0;

#declare Psi = -2;

union{ #for (p, 0, n, st)

#declare th = p*2*pi/n;

#for (q, 0, n, st)

#declare ph = q*pi/n;

#declare XX = S*R*cos(th)*sin(ph);

#declare YY = S*R*sin(th)*sin(ph);

#declare ZZ = R*cos(ph);

#declare X = XX + 0.0008*YY*YY;

#declare Y = 0.7*YY;

#declare Z = 2*ZZ*exp(-.3*(pi-ph));

sphere {

< X, Y, Z >, 1 // adding 3d axis

texture {

pigment { color < 1.0, 0.5, 0.4 > }

}

finish { ambient rgb <0.3,0.1,0.1>
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diffuse .3

reflection 0.0

specular 0.0 } // plot sphere

}

#end // end for q

#end // end for p

translate < 0, 30, 20 >

rotate < Theta, Phi, Psi > }

8.3.2 Sequential rendering of a heart-like model

We show in the following pictures the sequential sections of a progressive longitudinal and
latitundial generation of the heart shape. We note that now a very refined resolution (very
small cell dimensions has been chosen).

Fig.11 - Heart sequential vertical sections (POV-Ray 3.7 rendering)

VIEW ANIMATION (requires internet connection)

POV-Ray 3.7 code to generate figs 11 and 12

//==========================================================

// Heart 3D sequential vertical/horizontal sections

// (POV-Ray 3.7 rendering)

//==========================================================

#include "colors.inc"

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera {

location <-20, 20, -250>

look_at < 0, 0, 0>}

light_source {

http://albertostrumia.it/sites/default/files/Animations/HeartSQV.m4v
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Fig.12 - Heart sequential horizontal sections (POV-Ray 3.7 rendering)

VIEW ANIMATION (requires internet connection)

< 20, 40, -120>

rgb <1.000000, 1.000000, 1.000000> * 4.0

}

#declare R = 60;

#declare n = 300;

#declare st = 1;

#declare S = 1; // scale factor

#declare Theta = -110;

#declare Phi = 0;

#declare Psi = -2;

// replace n by n*clock for vertical sections animation

union{ #for (p, 0, n, st) // vertical section steps 2*n/3-n,n/3-n, 0-n

#declare th = -p*2*pi/n;

// replace n by n*clock for horizontal sections animation

#for (q, 0, n, st) // horizontal section steps 2*n/3-n,n/3-n, 0-n

#declare ph = pi - q*pi/n;

#declare XX = S*R*cos(th)*sin(ph);

#declare YY = S*R*sin(th)*sin(ph);

#declare ZZ = R*cos(ph);

#declare X = XX + 0.0008*YY*YY;

#declare Y = 0.7*YY;

#declare Z = 2*ZZ*exp(-.3*(pi-ph));

sphere {

< X, Y, Z >, 1 // adding 3d axis

texture {

pigment { color < 1.0, 0.5, 0.4 > }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection 0.0

http://albertostrumia.it/sites/default/files/Animations/HeartSQH.m4v
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specular 0.0 } // plot sphere

}

#end // end for q

#end // end for p

translate < 0, 30, 20 >

rotate < Theta, Phi, Psi > }

8.3.3 Random rendering of a heart-like model

Random rendering steps of our rough algorithmic heart model are illustrated in the following
fig. 13

POV-Ray 3.7 code to generate fig. 13

//==========================================================

// Heart 3D random generation steps

// (POV-Ray 3.7 rendering)

//==========================================================

#include "shapes.inc"

#include "glass.inc"

#include "colors.inc"

#include "metals.inc"

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera {

location <-20, 20, -250>

look_at < 0, 0, 0>

}

light_source {

< 20, 40, -120>

rgb <1.000000, 1.000000, 1.000000> * 4.0

}

#declare R = 60;

#declare n = 300;

#declare st = 1;

#declare S = 1; // scale factor

#declare Theta = -110;

#declare Phi = 0;

#declare Psi = -2;

#declare X = array[n+1][n+1];

#declare Y = array[n+1][n+1];

#declare Z = array[n+1][n+1];

#for (p, 0, n,st)

#declare th = p*2*pi/n;

#for (q, 0, n,st)

#declare ph = q*pi/n;



Chapter 7 –Fractal structures from cellular automata 275

Fig.13 - Heart random generation steps (POV-Ray 3.7 rendering)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/HeartRD.m4v


276 A. Strumia, Information as order hidden within chance

#declare XX = S*R*cos(th)*sin(ph);

#declare YY = S*R*sin(th)*sin(ph);

#declare ZZ = R*cos(ph);

#declare X[p][q] = XX + 0.0008*YY*YY;

#declare Y[p][q] = 0.7*YY;

#declare Z[p][q] = 2*ZZ*exp(-.3*(pi-ph));

#end // end for q

#end // end for p

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553) ;

// replace n by n*clock for animation

union{ #for(j,0,200*n) // steps n, 5*n, 10*n, 20*n, 50*n, 200*n

#declare p = int(n*rand(Rnd_1));

#declare q = int(n*rand(Rnd_2));

sphere {

< X[p][q], Y[p][q], Z[p][q] >,1

texture {

pigment { color < 1.0, 0.5, 0.4 > }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection 0.0

specular 0.0 } // plot sphere }

translate < 0, 30, 20 >

rotate < Theta, Phi, Psi > }

#end} // end for j

8.3.4 Cellular automaton rendering of a heart-like model

POV-Ray 3.7 code to generate fig. 13

//=====================================

// Cellular automata 3D Heart shape generation

// by POV-Ray 3.7

//=====================================

#include "colors.inc"

global_settings {assumed_gamma 1.0}

background { color rgb <00,0.0,0.0> }

camera {

location <-20, 20, -250>

look_at < 0, 0, 0>

}

light_source {

< 20, 40, -120>

rgb <1.000000, 1.000000, 1.000000> * 4.0

}

#declare R = 60;

#declare n = 300;
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Fig.14 - Heart generation steps by a cellular automaton (POV-Ray 3.7 rendering)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/HeartPOVRDCA.m4v


#declare st = 1;

#declare S = 1; // scale factor

#declare Theta = -110;

#declare Phi = 0;

#declare Psi = -2;

#declare X = array[n+1][n+1];

#declare Y = array[n+1][n+1];

#declare Z = array[n+1][n+1];

#for (p, 0, n,st)

#declare th = p*2*pi/n;

#for (q, 0, n,st)

#declare ph = q*pi/n;

#declare XX = S*R*cos(th)*sin(ph);

#declare YY = S*R*sin(th)*sin(ph);

#declare ZZ = R*cos(ph);

#declare X[p][q] = XX + 0.0008*YY*YY;

#declare Y[p][q] = 0.7*YY;

#declare Z[p][q] = 2*ZZ*exp(-.3*(pi-ph));

#end // end for q

#end // end for p

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare pp = 0;

#declare qq = 0;

union{ #for(j,0,5*n*n) // steps 50*n, 100*n, 110*n, 200*n, 370*n, 5*n*n

#declare p = pp + st*pow(-1,int(n*rand(Rnd_1)));

#declare q = qq + st*pow(-1,int(n*rand(Rnd_2)));

#if ( abs(p) < n)

#if( abs(q) < n)

#declare pp = p;

#declare qq = q;

sphere {

< X[abs(p)][abs(q)], Y[abs(p)][abs(q)], Z[abs(p)][abs(q)] >,1

texture {

pigment { color < 1.0, 0.5, 0.4 > }

}

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection 0.0

specular 0.0 } // plot sphere }

translate < 0, 30, 20 >

rotate < Theta, Phi, Psi > }

#end // end if

#end // end if

#end} // end for j
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A more realistic model of heart
structure

Sequential and random rendering processes

9.1 Introduction

9.2 Heart model based on POV-Ray 3.7 smooth triangle ob-
ject

Bob Hughes has written, in year 2000, a 3D POV-Ray heart model code based on a list of
data from a real human heart representation obtained by decomposition of the external heart
surface into small smooth triangles.1

We point out that the author does not start from a mathematical law (compressed string)
to calculate the data identifying the smooth triangles.2

So he needs to provide a full data list of the co-ordinates and local normal components
of each individual smooth triangle. The data file (heart.inc) involves more than 1600 smooth
triangles, the related data being listed sequentially one after the other as if the information
were at all irreducible.

An intriguing question is if similar biological data are truly non-computable (incompress-
ible string o irreducible information) or we may guess that in future some shorter rule (law)
could be discovered.

1The zipped code files can be downloaded at http://objects.povworld.org/cgi-bin/search.cgi?X=heart.
2A smooth triangle in POV-Ray is obtained interpolating a curved surface starting from its local gradient

vectors assigned in each vertex of the triangle.
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Fig.1 - Heart model based on a triangles data set by (Bob Hughes)

POV-Ray 3.7 code to generate fig. 1

//=====================================

// 3D Heart shape generation as a whole

// by POV-Ray 3.7 (model by Bob Hughes)

//=====================================

/*

POV-Ray version 1.0 include of a human heart.

by Bob Hughes

--

omniVERSE: beyond the universe

http://members.aol.com/inversez/POVring.htm

mailto:inversez@aol.com?PoV

*/

camera {

location <0, 0, -10.0>

direction <0.0, 0.0, 1.0>

up <0.0, 1.0, 0.0>

right <1.33333, 0.0, 0.0>

look_at <0, -1, 0>

}

// Light source

object { light_source { <5, 10 , -30> color rgb 1 }}

/* Texture declarations for object ’HEART’ */

#declare HEART_C1 = texture {



Chapter 7 –Fractal structures from cellular automata 281

finish{ ambient 0.1 diffuse 0.7}

// phong 1.0

// phong_size 70.0

pigment{ color red 1.000 green 0.400 blue 0.3500}

}

object { /* All Objects */

#include "heart.inc"

#version 3.1

rotate <-90, 180, 0>

rotate y*clock*360

translate <0, -3, 0>

/*

Scene extents

X - Min: -2.4900 Max: 3.3300

Y - Min: -0.3300 Max: 5.7600

Z - Min: -2.5100 Max: 5.7900

*/

}

background{rgb .3}

The POV-Ray 3.7 smooth triangle object operates on three couples of 3D vectors.

smooth triangle { < x1y1z1 >< u1v1w1 >
< x2y2z2 >< u2v2w2 >
< x3y3z3 >< u3v3w3 > }

– The former vectors of each couple <xi, yi, zi>, (i = 1, 2, 3) involve the co-ordinates of
the vertices of a triangle.

– The latter vectors <ui, vi, wi> are the components of the local gradient vector in the
related vertex, normalized to unity, which is orthogonal to the surface of the curved
triangle itself.

//=================================================

// Fragment example of the heart.inc data file

//=================================================

#version 1.0

/* Object ’HEART’ */

composite {

composite {

composite {

composite {

object {

union {

smooth_triangle { <-1.4100 0.9200 -0.7600> <-0.7857 -0.4896 -0.3782>

<-1.7200 1.7500 -0.8800> <-0.8391 -0.1947 -0.5079> <-1.7300 1.2500 -0.3800> <-0.8751 -0.3883 -0.2886> }

smooth_triangle { <-1.3700 1.4600 -1.2200> <-0.8018 -0.2494 -0.5431>

<-1.7200 1.7500 -0.8800> <-0.8391 -0.1947 -0.5079> <-1.4100 0.9200 -0.7600> <-0.7857 -0.4896 -0.3782> }
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Fig.2 - Graphic representation of a smooth triangle

smooth_triangle { <-1.4100 0.9200 -0.7600> <-0.7857 -0.4896 -0.3782>

<-1.1900 1.0100 -1.2200> <-0.7430 -0.3941 -0.5410> <-1.3700 1.4600 -1.2200> <-0.8018 -0.2494 -0.5431> }

....................................................................

smooth_triangle {

<2.1600 4.0400 4.3000> <0.7212 0.2054 0.6616> <2.0500 3.4500 4.5200>

<0.9089 -0.1626 0.3840> <1.8200 3.4200 4.8000> <0.7830 0.1992 0.5892> }}

texture { HEART_C1 }

bounded_by { box { <1.45000 3.42000 4.27000> <2.16000 4.19000 5.10000> }}}

bounded_by { box { <1.41000 2.97000 4.27000> <2.16000 4.19000 5.69000> }}}

bounded_by { box { <0.57000 2.42000 4.27000> <2.16000 4.19000 5.69000> }}}

bounded_by { box { <0.26000 0.96000 1.54000> <3.30000 5.29000 5.69000> }}}

bounded_by { box { <-2.49000 -0.33000 -2.51000> <3.33000 5.76000 5.79000> }}}

The code offers a nice representation of a heart external shape as a whole, but here we are
interested to control each individual triangle and possibly each individual cell (modeled by a
small sphere) in order to build either an ordered sequential or random or cellular automata
process, like those examined in the previous chapters.

9.2.1 Generating Hughes heart model by an ordered sequence of smooth
triangles

As a first step we have modified the original POV-Ray code and heart.inc data file in order
to obtain partial steps and related images showing how each smooth triangle may be added
according to an ordered sequence generating the heart structure.
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POV-Ray 3.7 code to generate fig. 3

//=================================================

// 3D Heart shape generation by an ordered sequence

// of smooth triangles (POV-Ray 3.7 code)

//=================================================

#include "heart.inc"

#version 3.7

camera {

location <0, 0, -10.0>

direction <0.0, 0.0, 1.0>

up <0.0, 1.0, 0.0>

right <1.33333, 0.0, 0.0>

look_at <0, -1, 0>

}

// Light source

object { light_source { <5, 10 , -30> color rgb 1 }}

/*

Scene extents

X - Min: -2.4900 Max: 3.3300

Y - Min: -0.3300 Max: 5.7600

Z - Min: -2.5100 Max: 5.7900

*/

#declare n = 1639;

// replace n by n*clock for animation

#for (i, 1, n, 1) // steps n/24 n/18 n/9 n/2 n

object{

T[i]

texture {

finish{ ambient 0.1 diffuse 0.7 }

pigment{ color red 1.000 green 0.400 blue 0.3500 filter 0 }

}

rotate <-90, 180, 0>

// rotate y*clock*360

translate <0, -3, 0>

}

#end

//=======================================================

// Fragment example of the modified heart.inc data file

//=======================================================

#version 1.0

#declare T = array[1800];

/* Object ’HEART’ */

#declare T[1] = smooth_triangle {

<-1.4100 0.9200 -0.7600> <-0.7857 -0.4896 -0.3782> <-1.7200 1.7500 -0.8800>

<-0.8391 -0.1947 -0.5079> <-1.7300 1.2500 -0.3800> <-0.8751 -0.3883 -0.2886> };

#declare T[2] = smooth_triangle {

<-1.3700 1.4600 -1.2200> <-0.8018 -0.2494 -0.5431> <-1.7200 1.7500 -0.8800>

<-0.8391 -0.1947 -0.5079> <-1.4100 0.9200 -0.7600> <-0.7857 -0.4896 -0.3782> };
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Fig.3 - Heart generation steps by an ordered sequence of smooth triangles (POV-Ray 3.7 rendering)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/HeartSmTriangSQ.m4v
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#declare T[3] = smooth_triangle {

<-1.4100 0.9200 -0.7600> <-0.7857 -0.4896 -0.3782> <-1.1900 1.0100 -1.2200>

<-0.7430 -0.3941 -0.5410> <-1.3700 1.4600 -1.2200> <-0.8018 -0.2494 -0.5431> };

....................................................................

#declare T[1638] = smooth_triangle {

<1.9700 4.1600 4.3600> <0.2145 0.6226 0.7526> <2.1600 4.0400 4.3000>

<0.7212 0.2054 0.6616> <1.7700 3.8300 4.6900> <0.2513 0.5910 0.7665>};

#declare T[1639] = smooth_triangle {

<2.1600 4.0400 4.3000> <0.7212 0.2054 0.6616> <2.0500 3.4500 4.5200>

<0.9089 -0.1626 0.3840> <1.8200 3.4200 4.8000> <0.7830 0.1992 0.5892>};

Since each smooth triangle is not very small, compared with a biological cell, the sequence
results very rough and the images of each sequence step resembles a broken egg shell rather
than a biological structure.

9.2.2 Generating Hughes heart model by random smooth triangles

The roughness of the images is further emphasized if we follow a random generation process
by means of smooth triangles.

POV-Ray 3.7 code to generate fig. 4

//================================================

// 3D Heart shape generation by a random sequence

// smooth triangles (POV-Ray 3.7 code)

//================================================

camera {

location <0, 0, -10.0>

direction <0.0, 0.0, 1.0>

up <0.0, 1.0, 0.0>

right <1.33333, 0.0, 0.0>

look_at <0, -1, 0>

}

light_source {

< 100, 120, -40>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#include "heart.inc"

#version 3.1

/*

Scene extents

X - Min: -2.4900 Max: 3.3300

Y - Min: -0.3300 Max: 5.7600

Z - Min: -2.5100 Max: 5.7900

*/

// }

#declare n = 1638;

#declare i = 1;
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Fig.4 - Heart generation steps by a random sequence of smooth triangles (POV-Ray 3.7 rendering)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/HeartSmTriangRD.m4v
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#declare Rnd_1 = seed(128);

// replace n by n*clock for animation

union{ #for(i,0, n) // steps n/8, n/4, n/2, n, 3*n, 12*n

#declare ind = 1+int(n*rand(Rnd_1));

object{

T[ind]

texture { pigment {color < 1.0, 0.5, 0.4 > }

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection 0.0

specular 0.0 }

}

rotate <-90, 180, 0>

rotate 0*clock*360

translate <0, -3, 0>

}

#end}

// The heart.inc file is the same as for the ordered sequence code

9.2.3 Generating Hughes heart model by cellular automata in smooth tri-
angles

A random sequence of smooth triangles may be treated even by cellular automata, simply
imposing that each of them is generated randomly by a contiguous smooth triangle. The
result is not very dissimilar to that obtained by an ordered sequence.

POV-Ray 3.7 code to generate fig. 5

//================================================

// 3D Heart shape generation by cellular automata

// in smooth triangles (POV-Ray 3.7 code)

//================================================

camera {

location <0, 0, -10.0>

direction <0.0, 0.0, 1.0>

up <0.0, 1.0, 0.0>

right <1.33333, 0.0, 0.0>

look_at <0, -1, 0>

}

light_source {

< 100, 120, -40>

rgb <1.000000, 1.000000, 1.000000> * 2.0

}

#include "heart.inc"

#version 3.1

/*

Scene extents

X - Min: -2.4900 Max: 3.3300

Y - Min: -0.3300 Max: 5.7600

Z - Min: -2.5100 Max: 5.7900

*/
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Fig.5 - Heart generation steps by smooth triangles cellular automata
(POV-Ray 3.7 rendering)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/HeartSmTriangCA.m4v
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// }

#declare n = 1638;

#declare i = 1;

#declare Rnd_1 = seed(128);

#declare pp = 100;

// replace n*n by n*n*clock for animation

union{ #for(i,0, n*n) // n, 8*n, 64*n, n*n/4, n*n/2, n*n

#declare p = pp + pow(-1,int(n*rand(Rnd_1)));

#if (p > 0)

#if ( p < n)

#declare pp = p;

object{

T[p]

texture { pigment {color < 1.0, 0.5, 0.4 > }

finish { ambient rgb <0.3,0.1,0.1>

diffuse .3

reflection 0.0

specular 0.0 }

}

rotate <-90, 180, 0>

rotate 0*clock*360

translate <0, -3, 0>

}

#end // end if

#end // end if

#end} // end i

9.3 Simplified heart model based on POV-Ray 3.7 single cells
in ordinary triangle objects

In order to refine the modified heart model we have proposed in the previous sections so that
each cell is represented by a single point belonging to some triangle we simplify the code by
replacing smooth triangle objects by ordinary triangle ones.

The heart external surface results no longer so perfectly smooth but we gain the advantage
of more realistic single cell multiplication representation. The resulting effect appears in
each image representing a step of the generation process and even more when the images are
collected into a movie (see fig. 7).

POV-Ray 3.7 code to generate fig. 6

//================================================

// 3D Heart shape generation by single cells

// in ordinary triangles (POV-Ray 3.7 code)

//================================================

#include "heartPoints"

#version 3.7

global_settings {assumed_gamma 1.0}
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Fig.6 - Heart as a whole generated by single cells in ordinary triangles
(POV-Ray 3.7 rendering)

camera {

location <0, 0, -10.0>

direction <0.0, 0.0, 1.0>

up <0.0, 1.0, 0.0>

right <1.33333, 0.0, 0.0>

look_at <0, -1, 0>

}

light_source {

< 7, 0, -40>

rgb <1.000000, 1.000000, 1.000000> * 1.0

fade_distance 3

fade_power 0.3

}

light_source{ <0,0,0>

color rgb<1,1,1>

area_light

<5, 0, 0> <0, 0, 5>

6,6 // numbers in directions

adaptive 1 // 0,1,2,3...

jitter // random softening

}//---- end of area_light

#declare st = 0.01;

#declare n = 1;

#declare N = 1647;

#for (i,0,N,1)
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#for (p,0,n,st)

#for (q,0,p,st)

#declare X = a[i][3] - (a[i][3] - a[i][0])*p/n + (a[i][6] - a[i][0])*q/n;

#declare Y = a[i][4] - (a[i][4] - a[i][1])*p/n + (a[i][7] - a[i][1])*q/n;

#declare Z = a[i][5] - (a[i][5] - a[i][2])*p/n + (a[i][8] - a[i][2])*q/n;

sphere { < X, Y, Z >, 0.1

texture{

pigment{color < 1.0, 0.3, 0.2 > }

finish { ambient rgb <0.3,0.1,0.1>

diffuse 0.3

reflection 0.0

specular 0.0}}

rotate <-90, 180, 0>

rotate 0*clock*360

translate <0, -3, 0>

}

#end // i

#end // p

#end // q

9.3.1 Generating a heart model by an ordered sequence of cells in ordinary
triangles

Ordinary triangles are characterized simply by the triplets of the co-ordinates of their vertices.
So the “HeartPoints.inc” to be included by the POV-Ray 3.7 code can be obtained by the
original “heart.inc” file defining the smooth triangles data simply dropping the second vector
of each couple, which is related to the local normal vector.

POV-Ray 3.7 code to generate fig. 7

//====================================================

// 3D Heart shape generation by an ordered sequence

// of smooth triangles (POV-Ray 3.7 code)

//====================================================

#include "heartPoints"

#version 3.7

global_settings {assumed_gamma 1.0}

camera {

location <0, 0, -10.0>

direction <0.0, 0.0, 1.0>

up <0.0, 1.0, 0.0>

right <1.33333, 0.0, 0.0>

look_at <0, -1, 0>

}

light_source {

< 7, 0, -40>

rgb <1.000000, 1.000000, 1.000000> * 1.0

fade_distance 3

fade_power 0.3



292 A. Strumia, Information as order hidden within chance

Fig.7 - Heart generation steps by an ordered sequence of cells in ordinary triangles (POV-Ray 3.7 rendering)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/HeartPointsSQ.m4v


Chapter 7 –Fractal structures from cellular automata 293

}

light_source{ <0,0,0>

color rgb<1,1,1>

area_light

<5, 0, 0> <0, 0, 5>

6,6 // numbers in directions

adaptive 1 // 0,1,2,3...

jitter // random softening

}//---- end of area_light

#declare st = 0.01;

#declare n = 1;

#declare N = 1647;

#for (i,0,N,1)

#for (p,0,n,st)

#for (q,0,p,st)

#declare X = a[i][3] - (a[i][3] - a[i][0])*p/n + (a[i][6] - a[i][0])*q/n;

#declare Y = a[i][4] - (a[i][4] - a[i][1])*p/n + (a[i][7] - a[i][1])*q/n;

#declare Z = a[i][5] - (a[i][5] - a[i][2])*p/n + (a[i][8] - a[i][2])*q/n;

sphere { < X, Y, Z >, 0.1

texture{

pigment{color < 1.0, 0.3, 0.2 > }

finish { ambient rgb <0.3,0.1,0.1>

diffuse 0.3

reflection 0.0

specular 0.0}}

rotate <-90, 180, 0>

rotate 0*clock*360

translate <0, -3, 0>}

#end // i

#end // p

#end // q

//==================================================================

// Fragment example of the modified ‘‘heartPoints.inc’’ data file

//==================================================================

#declare a = array[1648][9]{

{-1.4100,0.9200,-0.7600, -1.7200,1.7500,-0.8800, -1.7300,1.2500,-0.3800},

{-1.3700,1.4600,-1.2200, -1.7200,1.7500,-0.8800, -1.4100,0.9200,-0.7600},

{-1.4100,0.9200,-0.7600, -1.1900,1.0100,-1.2200, -1.3700,1.4600,-1.2200},

{1.8200,3.4200,4.8000, 1.7700,3.8300,4.6900, 2.1600,4.0400,4.3000},

{1.9700,4.1600,4.3600, 2.1600,4.0400,4.3000, 1.7700,3.8300,4.6900},

{2.1600,4.0400,4.3000, 2.0500,3.4500,4.5200, 1.8200,3.4200,4.8000}}

9.3.2 Generating a heart model by random cells in ordinary triangles

A random process generating the heart model point by point impressively shows how chance
combined with information allows to build an ordered structure starting by initial conditions
assigned randomly.
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POV-Ray 3.7 code to generate fig. 8

//====================================================

// 3D Heart shape generation by random cells

// of smooth triangles (POV-Ray 3.7 code)

//====================================================

#include "heartPoints"

#version 3.7

global_settings {assumed_gamma 1.0}

camera {

location <0, 0, -10.0>

direction <0.0, 0.0, 1.0>

up <0.0, 1.0, 0.0>

right <1.33333, 0.0, 0.0>

look_at <0, -1, 0>

}

light_source {

< 7, 0, -40>

rgb <1.000000, 1.000000, 1.000000> * 1.0

fade_distance 3

fade_power 0.3

}

light_source{ <0,0,0>

color rgb<1,1,1>

area_light

<5, 0, 0> <0, 0, 5>

6,6 // numbers in directions

adaptive 1 // 0,1,2,3...

jitter // random softening

}//---- end of area_light

#declare st = 1;

#declare n = 100;

#declare N = 1647;

#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

union{ #for(j,0,256*N,1) // steps N/6 N/3 N 4*N 16*N 256*N

#declare i = int(N*rand(Rnd_1));

#declare p = int(n*rand(Rnd_2));

#declare q = int(p*rand(Rnd_3));

#declare X = a[i][3] - (a[i][3] - a[i][0])*p/n + (a[i][6] - a[i][0])*q/n;

#declare Y = a[i][4] - (a[i][4] - a[i][1])*p/n + (a[i][7] - a[i][1])*q/n;

#declare Z = a[i][5] - (a[i][5] - a[i][2])*p/n + (a[i][8] - a[i][2])*q/n;

sphere { < X, Y, Z >, 0.05

texture{

pigment{color < 1.0, 0.3, 0.2 > }

finish { ambient rgb <0.3,0.1,0.1>

diffuse 0.3
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Fig.8 - Heart generation steps by random cells in ordinary triangles
(POV-Ray 3.7 rendering)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/HeartPointsRD.m4v
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reflection 0.0

specular 0.0}}

rotate <-90, 180, 0>

# rotate 0*clock*360 // uncheck for animation

translate <0, -3, 0>}

#end} // j

9.3.3 Generating a heart model by cells plotted by cellular automata

As a final step we implement a random process generating the heart model by cellular au-
tomata. Of course the cell dimension is not realistic respect to true biological conditions, in
order to reduce heaviness and time duration of computer calculations. But the graphic result
is enough to render the idea of what may happen in nature. Information seems just to drive
chance towards order and organization.

POV-Ray 3.7 code to generate fig. 9

//=====================================

// 3D Heart shape generation by cellular automata

// in ordinary triangles POV-Ray 3.7

//=====================================

#include "heartPoints"

#version 3.7

global_settings {assumed_gamma 1.0}

camera {

location <0, 0, -10.0>

direction <0.0, 0.0, 1.0>

up <0.0, 1.0, 0.0>

right <1.33333, 0.0, 0.0>

look_at <0, -1, 0>

}

light_source {

< 7, 0, -40>

rgb <1.000000, 1.000000, 1.000000> * 1.0

fade_distance 3

fade_power 0.3

}

light_source{ <0,0,0>

color rgb<1,1,1>

area_light

<5, 0, 0> <0, 0, 5>

6,6 // numbers in directions

adaptive 1 // 0,1,2,3...

jitter // random softening

}//---- end of area_light

#declare st = 1;

#declare n = 20;

#declare N = 1647;
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Fig.9 - Heart generation steps by cells as cellular automata belonging to ordinary triangles
(POV-Ray 3.7 rendering)

VIEW ANIMATION (requires internet connection)

http://albertostrumia.it/sites/default/files/Animations/HeartPointsCA.m4v
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#declare Rnd_1 = seed (1153);

#declare Rnd_2 = seed (553);

#declare Rnd_3 = seed (876);

#declare ii = 0;

#declare pp = 0;

#declare qq = 0;

// replace N by N*clock for animation

union{#for(j,0,int(N/6),1) // steps N/6 N/2 24*N 256*N 512*N 630*N

#declare i = ii + st*pow(-1,int(N*rand(Rnd_1)));

#for(k,0,n,1)

#declare p = pp + st*pow(-1,int(n*rand(Rnd_2)));

#declare q = qq + st*pow(-1,int(n*rand(Rnd_3)));

#if (i > 0)

#if(i < N)

#if (p > 0)

#if (p < n)

#if (q > 0)

#if(q <= p)

#declare pp = p;

#declare qq = q;

#declare ii = i;

#declare X = a[i][3] - (a[i][3] - a[i][0])*p/n + (a[i][6] - a[i][0])*q/n;

#declare Y = a[i][4] - (a[i][4] - a[i][1])*p/n + (a[i][7] - a[i][1])*q/n;

#declare Z = a[i][5] - (a[i][5] - a[i][2])*p/n + (a[i][8] - a[i][2])*q/n;

sphere { < X, Y, Z >, 0.05

texture{

pigment{color < 1.0, 0.3, 0.2 > }

finish { ambient rgb <0.3,0.1,0.1>

diffuse 0.3

reflection 0.0

specular 0.0}}

rotate <-90, 180, 0>

rotate 0*clock*360

translate <0, -3, 0>}

#end // end if

#end // end if

#end // end if

#end // end if

#end // end if

#end // end if

// #end // end if

#end // k

#end} // j



Conclusion

In the present report we have attempted to show how chance and information need to work
together so that ordered structures, like complex systems and in particular living bodies, are
allowed to emerge locally starting from unorganized matter.

The role of some driving information has appeared essential in order to direct the evolutive
trajectories of any system towards an organized ordered structure resulting as an attractor.
Matter and energy alone prove to be not enough to generate order, because of the second law
of thermodynamics, which compels any matter-energy system towards disorder and thermal
equilibrium. Even if, locally, some partially ordered structures may emerge, by chance, the
probability of such an occurrence is very very small and the entire age of the universe would
not be sufficient to produce an organized system comparable to the living beings which
actually we observe on our planet. The number of the ordered possible combinations of
particles is too small compared with the huge number of disordered combinations. Moreover,
even if an ordered configuration might occur by chance, its stability in time would be even
more and more unlikely.

A further governing principle like information, which is neither matter nor energy (ac-
cording to N. Wiener) seems to play an essential role in the process of order and organized
systems emergence from matter.

We have shown how algorithmic information (in the sense we have proposed just from
chapter 1) can operate in order to generate complex systems like fractals either starting
from an already ordered sequence of initial conditions or starting from random initial condi-
tions, leading to the same geometry of the resulting objects, as attractors towards which the
evolutive trajectories are led thanks to information.

Of special interest, in relation to biological systems, has been revealed cellular automata
since they add to the driving algorithmic information the constraint that any daughter cell
is located in contiguity with its mother cell. No matter if the choice of the near location of
the daughter cell is chosen by chance. What is relevant is the role of the law (information)
according to which the daughter cell is born.

The techniques implemented to generate fractal shapes have been, finally, applied also to
a biological system like a human organ, e.g., the heart, in order to simulate the generation or
regeneration of its tissue by a stem cell. We saw how a simple program (compressed string)
allows to obtain only a rough model of an heart shape, while a true realistic anatomic shape
seems to require to know the full (uncompressed) list of the co-ordinates localizing the single
cells, even if they are schematically represented by small spheres. An intriguing question
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arises if a biological organ belonging to a living body can be generated by an algorithm
which can be compressed within a relatively short program string, or if an incompressible
string of data is required to describe each single cell or constituent part of the whole system.
Is the DNA, and more generally the biological code responsible of a living body generation,
more resemblant to a compressible or to an incompressible string of code?

In principle one could guess to model the whole universe as a set of nested attractors.

In the present investigation we have limited ourselves only to attack the problem of the
emergence of complex boundary geometrical shapes of bodies (like fractals and a living organ)
thanks to the concurrence of some information (i.e., something resembling an Aristotelian
form). A More intriguing matter would be, beside that of the generation of the external and
internal organized structure of complex systems, that of modeling their behavior along time,
i.e., their dynamics. So timidly approaching the matter of their nature (in the Aristotelian
Thomistic sense of the word, i.e., operational ability), together with the matter of their
essence (i.e., existing ability as organized ordered structures).

Further researches will be required in future to widen the present program of investigating
the role of information (form) as an immaterial principle of organization and activity of
matter-energy. We hope that the INTERS project on “Form and information” may offer a
suitable context to develop such a stimulating search and will be albe to provide some more
relevant results.
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