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We consider the evolution of a trait, which is under both genetic and pheno- 
typic transmission. An individual is always born in one state but can be converted 
to the other before reaching adulthood. If the conversion takes place by a learning 
process, the native state is called “unskilled,” and that acquired by learning is 
called “skilled. ” If phenotypic conversion takes place by way of infection, the 
native state is uninfected, and can be converted to infected. Native and converted 
phenotypes may be subject to selection; acquiring a skill may lead to selective 
advantage of skilled versus unskilled, while contracting a disease may involve 
a selective disadvantage. Conversion probability is a function of the parental 
phenotypes. In some of our models we assume that only one parent has teaching 
ability (or transmits the disease) and in others we consider more general situa- 
tions. The probability of learning (or of taking the disease) may be determined 
by the individual’s genotype. A diallelic locus is considered. The evolution of 
the genotypes and the phenotypes is studied in a variety of situations. Equilibria, 
and in a few simple cases the dynamics of the phenotypes and genotypes in the 
population are given. The usual equilibrium for heterozygote advantage is 
found to depend, in the present case, on the parameters of the learning process. 
Oscillatory equilibria and more than one stable equilibrium can exist in certain 
circumstances. Even in the absence of genotypic differences for the conversion 
probability gene frequencies may change. 

1. INTRODUCTION 

The quantitative theory of genetic change in populations is one of the most 
highly developed subdisciplines of theoretical biology. This is especially true 
for single gene loci, or small numbers of loci with well-defined effects. The 
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dynamics of the change of characters that are not controlled in a simple genetic 
way but that depend on interactions with the environment is one of the under- 
developed areas of population genetics. We have been especially interested 
in the transmission and evolution of cultural traits that are influenced by the 
familial environment, and by the group into which an offspring is born 
(Cavalli-Sforza and Feldman 1973a, b, Feldman and Cavalli-Sforza, 1975). 
In one of these studies we addressed the question of the interation between 
genotype and phenotype by assuming that a child’s phenotype was linearly 
regressed on the midparental phenotype, but in such a way that the regression 
coefficient depended on the child’s genotype. There are obvious generalizations 
to the case where the regression coefficient depends on both parental genotypes 
as well. 

The simple model was amenable to some analytic treatment. A central 
objective of that study was to track changes in population statistics, such as 
parent-offspring and sib-sib correlations, as well as heritability, over time. 
(A completely different approach to the same subject was taken by Morton (1974) 
and Rao, Morton, and Yee (1974). The graphical analysis by Lewontin (1974) 
however, is similar in many respects to our formulation.) In these studies 
we considered the gene frequency to be fixed, and we assumed random mating 
and no natural selection. Some of these restrictions have been lifted in a study 
by D. Wagener (in preparation). 

Most studies of the dynamics of phenotypes have concentrated on the statistics 
of the continuous traits. Kimura (1965) analysed a one locus model with mutation 
and stabilizing selection. He used a quadratic deviations fitness function and 
allowed mutation to cause small changes in allelic effects. He showed that under 
these assumptions the equilibrium distribution of allelic effects was 
approximately normal. Latter (1970), used a different approach to obtain 
a formula for the amount of genetic variance that could be maintained. 
The analysis by Slatkin (1970) was restricted to properties of the equilibrium 
phenotypic variance in a “polygenic” model and was not concerned with any 
equilibrium properties of such genotypic variables as gene or chromosome 
frequencies or the genetic contribution to the phenotypic variance. Lande’s 
recent studies of more general models of the Slatkin type does address the 
issue of heritability, but without reference to allele frequencies at specific 
loci (Lande, 1975). 

In the present paper we study models in which the probability of transmission 
of a discontinuous phenotype to an offspring depends only, or largely, on 
whether one or both of its parents had the trait. Individuals are classified 
into those who have the trait, called skilled, and those who do not, called 
unskilled. It is our purpose to study situations in which the acquisition of 
the skill may carry with it a selective advantage (or disadvantage). We consider 
a single diallelic locus which may affect the presence or absence of the skill. 
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“Skilled” and “unskilled” are the only possible phenotypes. We first develop 
a more general form of the model which allows learning differences among the 
genotypes, and genotypically determined selection values for the trait. In 
most of the models presented here we assume that only one parent is involved 
in the transmission of the trait. Biparental extensions are obvious, and an 
example is contained in Section 7. However, in the more general model and in 
most special cases the assumption of uniparental teaching is retained. 

We demonstrated (Cavalli-Sforza and Feldman, 197313) previously that the 
dynamics of change in statistics for a phenotype in a population may be strongly 
affected by interactions between the parent’s and the offspring’s phenotypes 
and genotypes. One of our main purposes here is to demonstrate how selection 
on a culturally determined character can cause changes in gene frequency. 
We shall also show how, under special circumstances, gene frequencies can 
change even if there are no genetic differences in learning ability. 

We commence with the structuring of a general uniparental model. In 
subsequent sections we discuss a number of special simpler cases in which 
there are no genotypic differences in selection and in some of which there 
are special assumptions about the mode of transmission of the skill. 

2. A GENERAL UNIPARENTAL TRANSMISSION AND SELECTION SCHEME 

Consider a simple diallelic genetic locus at which the frequencies of alleles A 
and a are p and p, respectively. In addition to their genotype, individuals 
are characterized by the phenotype of having or not having a certain unspecified 
skill. Within the genotypes AA, Aa, aa the skilled individuals are denoted 
--- 
AA, Au, aa, and the unskilled ones AA, Au, aa. The proportions of the respective 
genotypes that are skilled are K, , k, , k, at a given generation. Thus, K, is the 
number of AA divided by the combined number of AA and AA, etc. Mating 
occurs at random with respect to skill and genotype. One parent, who may 
or may not be skilled, is arbitrarily defined as the teaching parent. If the teaching 
parent is skilled the probabilities that the offspring of genotypes AA, Aa, 
and aa are unskilled are respectively Ni , iVa , and Na . If the teaching parent 
is unskilled they are n, , n2 , 11s . Finally we suppose that selection occurs and 
that it depends on the acquisition of the skill. The relative survival rates of __- 
AA, Au, iii, AA, Au, au are 1 + sr , 1 + sa , 1 + s, , 1 + t, , 1 -t t, , 1 f t, , 
respectively. 

To track the changes in the various frequencies from one generation to the 
next we introduce the genotype frequencies u, v, and w of AA, Aa, and aa, 
respectively. All 36 possible matings, their frequencies and the probabilities 
of the various classes of offspring may then be tabulated. The list is recorded 
as Table I. 
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It is easy to see, by adding the appropriate groups of frequencies that after 
the first generation the genotype frequencies AA, Au, and au are in fact the 
products of the respective gene frequencies. Therefore, we may reduce the 
consideration of the variables u, V, and w to that of p, the frequency of A in 
the population. Again, by adding the appropriate offspring frequencies of -- 
AA, Aa, and Zi, and dividing by the new genotype frequencies, we obtain 
a recursion system for k, , k, , and k, in terms of these variables, and the gene 
frequency in the previous generation. The complete four-dimensional recursion 
system is presented as equations (I), (2) (3), and (4) with Q = 1 - p. 

p[l _L WI + h(l 
PI = 1 + (Slk, + tl( 1 - K,)} pa 

- u P + bk, + a - WI1 
+ 2{s,k, + t,(l - k,)) pq +{& + &(I - &,F ’ (l) 

k,’ = 

(I--n,)[p(l-k,)(l+t,) + q(l--k,)(l +f,)l + (~--NJW~~+SI) + @2(1+s2)1 

1 +p[& + tl(l - k,)l + ds2k2 + t2U - k2)l 
(4 

k 2 , = ~(l-n,)[p(l-k,)(l +~,>+q(1-k,)(~+~,)l+(l-~,)[pk,(l+s,)+qk,(l+sz)l 
2 - 1 + p[& + tl(l - k,)l + d& + t2U - kJ1 
I (I-n2)[p(l-k,)(1+~,)+q(l-~,)(1+~,)l+(l-~,)C~~~(l+~,)+qk,(~+s~)l i- 

’ 2 1 + p[& + te(l - &)I + q[& + t&l - &)I 
(3) 

k , =(l-n3)[p(l-k2)(1+t2)+~(1--3)(1+t3)1+(1-~3)IPk2(1+s~)+qk3(l+s,)l 
3 1 + p[s,k, + tz(l - &)I i- q[& + h(l - kdl 

(4) 
The full four-dimensional system, which involves 12 parameters (actually 
11 since we can normalize the viabilities), is clearly very complicated. It is 
easy to see that apart from states of genetic fixation ( p = 0, p = 1) any isolated 
equilibrium of the system must satisfy 

j?Jz {S3R3 + ta(1 - R,)) - {stfip + t20 - R2) 

Sff 
(5) 

1 1 + t1( 1 - Al) f S3R3 + i3( 1 - R,) - 262ff2 + f2(1 -m ’ 

where the circumflex denotes equilibrium values of the variables, provided 
the right side of (5) is meaningful. 

For (5) to be admissible (i.e., 0 < j < 1) we require restrictions on A, , 

A2 7 and A, . But these equilibrium values are difficult to extract from the system 
of three simultaneous cubic equilibrium equations. For this reason we have 
chosen a set of less general parametrizations for which equilibrium theory, 
and in some cases time dependent theory, can be obtained. In all of the analysis 
that follows we set si = sa = sa = s and t, = t, = t3 = 0. Thus, the relative 
viability of a skilled to an unskilled phenotype is 1 + s : 1. This is a substantial 
simplification, but does cover the important case where selection is completely 
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phenotypic. The various models that follow involve assumption on the trans- 
mission parameters Ni and ni . We shall refer to the general model (l)-(4) as 
model G. 

3. SOME RESULTS FOR THE GENERAL MODEL WITH SELECTION FOR SKILL ONLY 
(MODEL SS) 

Set si = s, ti = 0, (; = 1, 2, 3) in (l)-(4). The system is now one with 
essentially seven parameters. Writing CL( = 1 - ni and /3i = (1 + s)( 1 - Ni) - 01~) 
(; = 1, 2, 3) the system (l)-(4) is more simply expressed as 

P’ = p(1 + sW(l + SK), (6) 
kl’ = (a1 + fvG)/U + SK), (7) 

k,’ = ww% + B,w(l + SK,) i 6% + 13,fGMl + &)I~ (8) 

4 = (aa + &~2)/(1 + sm (9) 

where K1 = pk, + qk, , K2 = pk, + qk, . The K1 and K, are in some sense 
marginal effects of the skill. K = pK, + qK, is the mean skill in the population. 
Rewriting (6) as 

P’ = P + sPq(K, - &Ml + SK), (6’) 

it is easy to see that the equilibria for p are of the form $ = 0, j = 1, and, 
from KI = K, , 

b = (6 - Q/(4 + A, - 2&h (10) 

where the hats denote values at equilibrium. If $ = 0, then from (9), if 01~ + 0, 
a single valid equilibrium value of k3 is obtained as the root of a quadratic 
equation. We call this k, . ^(‘) When substituted into (8), this produces a single 
valid value &Lo) as the root of a quadratic equation. Together &” and xi” produce 
a unique &“‘. We denote this solution ($ = 0, ii’), &‘), &“) by S(O). Similarly 
there is an equilibrium ($ = 1, &:I’, &I, @)), which we denote by S(l). 

It is not difficult to see that L?(O) is stable when s > 0 only if A$‘) > xi’), 
or when s < 0 only if &‘) < xi’). Note here that if 01~ (or 01~) is zero then so is 
&, (or L,). From these boundary facts we infer that a gene frequency polymorphism 
at equilibrium entails that, if it is advantageous, the skill is more frequent at equi- 
librium among the heterozygotes than the homozygotes. This says nothing about 
the form of the polymorphism, although (10) . IS o b viously a candidate. We shall 
see that the full picture is more complicated than this. 

The (genetic) polymorphic equilibrium (10) is explicitly determined from 
(7)-(9) with Kip) = K.$“‘. Th e superscriptp denotes the polymorphic equilibrium, 
which henceforth will be called S(p). In fact we must have 
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where K(p) solves the cubic equation 

k’3wl + 83 - %)I 

+ WPl + P3 - 282 + 4% + a3 - 2012) - w3 - A”)1 
+ K[ol, + 013 - 2% - 433 - 0[3/31 + 2&J + %2 - %%7 = 0 (11) 

It is therefore conceivable that three polymorphic solutions exist for the average 
frequency of skill in the population. Rather than work with the full seven para- 
meter system, we have assumed in most of what follows that CQ = 0 for all i. 
(That is, an unskilled teaching parent does not produce skilled offspring.) 
It may be that this assumption alters some of our qualitative conclusions. 
However, in some of the subsequent sections we relax this assumption (while 
making others) so that certain speculations concerning the more general case 
can be made. 

4. EQUILIBRIUM ANALYSIS OF MODEL SS WITH oli = 0 

As in the general case, at equilibrium we must have j = 0 or $ = 1 or 
&i = K2 . The case $ = 0 is analogous to the solution So) in the case where 
ai # 0. But with oli = 0 (all ;) there are three possible solutions with j = 0. 
They are 

$ = 0; /$, = A2 = A, = 0 (124 

$ = 0; $1 = 032P - lM32/2& 9 & = @,/2 - 1)/s, L, = 0 (12b) 

$ = 0; A, = /&r”/(l + S@), 4s = YO, L, = (p3 - 1)/s, W) 

where r” is the valid root of 

Sk2 + kz[ 1 - /32/2 - &A3/2( 1 + d3)] - &r;,/Z( 1 + si3) = 0. 

A set corresponding to (12a)-(12c) with j = 1 clearly also must be considered; 
of interest to us is the point 

1; = 1; 6, = (fil - 1)/s, L, = Yl, L, = j33Yi/(l + Vi), (124 

where r1 is the valid root of 

sk22 + k,[l - /3,/Z - $2&/2(l + sff,)] - /3,&/2(1 + &) = 0. 

Note that (12b), (12c), and (12d) are admissible only if s > 0. Further, (12~) 
requires is, > 1, (12d) requires fir > 1, and (12b) requires p2 > 2. 
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Remark 4.1. When CQ # 0 for all i, (12a, b, c) reduce to a single equilibrium. 
With s > 0 and 01~ small (necessarily positive) this equilibrium, S(O), is close 
to (12~). With s < 0 and 01~ small S(O) . 1s close to (12a). Similar considerations 
apply to S’(l) when cli are small, with reference to (12d). 

Equilibrium (12b) can never be stable, while (12a) always has a unit eigenvalue. 
On the other hand (12~) is locally stable if and only if & > A, (since its existence 
entails s > 0). This in turn reduces to the elegant condition /?a > pz . Similarly, 
if 81 > fiz the analogous $ = 1 equilibrium is locally stable. Thus, if skill 
is selected for (s > 0) and the selection is strong enough (pB > 1, p1 > 1) 
so that (12~) and (12d) exist, then we expect genetic polymorphism to be maintained 
if the heterozygotes are more receptive to the skill of their parents than are the 
homoxygotes. 

Remark 4.2. From (7)-(9) it is clear that even though (12a) has a unit 
eigenvalue, it cannot be stable while (12b) and (12~) exist. If (12a) is stable, 
it has an eigenvalue of unity and neither (12b) nor (12~) exist. 

Remark 4.3. In this situation LY~ = 0 for all i, an interesting new special 
class of equilibria exists in addition to S to), S(l), and S(P). If A1 = x, = L, = 0, 
then the system is in equilibrium for any p value. This neutral one parameter 
family of equilibria is denoted ,!P). 

S(n) = {p, R, = 0, A, = 0, x, = 0). (13) 

To elucidate the interaction of selection and differential transmission of the 
selected character as an evolutionary force, it is necessary to study the stability 
properties of the equilibria S(O), S(l), S(*), and Stn) in some detail. 

We have already remarked that the (gene frequency) boundary equilibrium 
(12~) exists when s > 0, & > 1 and is stable if & > f12 . Solution (12d) exists 
when s > 0, is, > 1 and is stable if ,Q1 > pz . If s < 0, neither (12b) nor (12~) 
exist. When ai = 0 we return to (11) and see that either R = 0 or 

R(“) = (A83 - 82”) - (A + 163 - 332) = @d = @de 

@l + 83 - 332) (14) 

The solution & = 0 is Sn) as defined in (13). The polymorphic isolated equi- 
librium (14) has 

P ̂fp) = (A - P2Wl + A - 2@2), (15) 

and clearly requires either & > pz , p3 > p2 , or & < & , &, < fi2 for existence. 
It is straightforward to show that if s < 0 this polymorphic solution (14), (15) 
cannot exist since the constraint 0 < R (p) ,( 1 is violated. In other words, 
if the skill is selectively disadvantageous and if offspring attain the skill only by 
transmission from a skilledparent, no isolatedpolymorphicgene frequency equilibrium 
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can be attained. When s > 0, from (14) the admissibility condition 0 < R(P) < 1 

reduces to 

w% - 822M81 + A - 332) > 1) (16) 

irrespective of whether /Ii , /3s > f12; or /I1 , & < P2 . From (14), (IS), and (6), 
(g), and (9) at equilibrium, &‘), xi”), and &AP) may be found. A linear analysis 
in the neighborhood of this equilibrium reveals that it is locally stable provided 

(a) (16) holds, and (b) A < I% , A < PZ - 
Closer scrutiny of these stability conditions provides further information 

on the interaction between differential receptivity to the skill and its selective 
advantage. Condition (b) clearly requires Nr , Na > N2 ; i.e., the chance 
that a heterozygote offspring of a skilled teaching parent is skilled is greater 
than that of a homozygote child. Thus, (b) sa y s nothing about the selection. 
However, (16) does involve all of the parameters in the model. It reduces to 
the inequality 

s > V/(1 - V), (164 
where 

v = (N&v, - N,2)/(N, + Iv3 - 2N2). (17) 

Since Y is positive, (16a) says that when there is a selective advantage to the skill 
it must be sufficiently great before a stable gene frequency polymorphism 
occurs. Another way of looking at the existence-stability condition (16) is 

or 

632 - 1)” > (PI - l)(& - 11, if B2 > & , P2 , (16b) 

t/32 - 1)” < (A - l)(P, - 11, if PI , A > P2 . (164 

The interpretation of (16b) is that when the heterozygote has the advantage 
in receiving the skill, the polymorphism will be stable provided the advantage is 
large enough that the geometric mean condition (16b) holds. Thus, if we view 
is, - 1, pa - 1, and /I3 - 1 as “effective fitnesses” for AA, Aa, and aa, then 
normalize so that the heterozygote has effective fitness unity, the geometric 
mean of the homozygous effective fitnesses must be less than unity. 

Remark 4.4. In the symmetric case /3, = pa , the conditions for stability 
of the gene frequency polymorphism are /3r < B2 , s > 0, & + /3, > 2. 

As mentioned earlier, the equilibrium (12~) exists when s > 0 and & > 1 
and is stable when /3a > /I2 . (12d) requires /& > /3, and fir > 1. If we combine 
these conditions with (16~) it is impossible for just one of the two gene frequency 
fixation points (12~) and (12d) t o exist when the polymorphic equilibrium also 
exists and is unstable. On the other hand, if /I1 < 1 and /3s < 1, it is conceivable 
that the polymorphic equilibrium exist and be stable while neither (12~) nor 
(12d) is valid. 
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More interesting are the following possibilities. If /3i < 1, @a < 1 and 
/3a > 1, then neither (12~) nor (12d) exists. From (16b), S(p) also may not exist. 
Another interesting possibility is that /3i > 1; /3s > 1; /3i , ,6, > ,6, , but 
(& - l)(& - 1) < (pz - l)“, in which case both (12~) and (12d) are locally 
stable, but the polymorphic equilibrium S (fl) does not exist. These are extremely 
interesting cases because they do not conform to any classical outcome of a 
simple, purely genetic, selection model. To understand them we must return 
to the neutral curve of equilibria S cn). A numerical study has been made of 
these possibilities and it appears that the story is completed by invoking a range 
of initial gene frequency values from which convergence to S(n) occurs. In 
the former example where /3i < 1, 8s < 1, and no isolated equilibrium is valid 
convergence occurs for all initial gene frequencies to SC%). In the latter example 
there is a range of p values near p = 0 from which convergence to (12~) occurs 
and a corresponding domain of attraction to (12d). Our numerical work shows 
that when S(P) does not exist these two domains are separated by a region 
of p values from which convergence occurs to Stn). Of course the convergence 
is algebraically slow in the gene frequency, although the ki values may decrease 
geometrically. 

Remark 4.5. If CQ # 0, then S’(O) and S(l) are single points. 9~) apparently 
does not exist. There may be up to three polymorphic equilibria. No detailed 
analysis has been made in this case. We shall see from some of the special cases 
in the following sections that further complications may arise. We proceed 
to a discussion of these simpler models, some of which are particular cases 
of the general system (l)-(4), while others involve some changes in the trans- 
mission rules. 

5. EQUAL LEARNING AMONG GENOTYPES WITH COMPLETE TRANSMISSION OF 
PARENTAL PHENOTYPE (MODEL EC) 

In terms of the parameters defined in the previous section we have si = sa = 
sa = s; Ni = Na = Na = 0, 5 = n2 = n3 = 1. That is, all of the offspring 
of skilled teaching parents are skilled and all of the offspring of unskilled teaching 
parents are unskilled. The system (l)-(4) reduces to 

Pt,, = P# t Q’tk,,, + ~&M-1 + Wkt + 2P&,,t + d’kdl, (18) 
km,, = (1 + sXPtk,,t + dd/P + 4PAt + c&41, (19) 

k,,t+, = (k,,t+l + kw+JP~ (20) 
k s,t+l = (1 + Wtk,,, + &,t)lU + Otk,,, + c&,t)l, (21) 

where the subscript t denotes values in the tth generation and 0 the initial 
generation. 
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In terms of K,,, , K,,, , and Kt , (6)-(9) reduce to 

pt.+, = ~41 + sK,~tMl + SK), 
k l,t+1 = (1 + 4 Kl,tlU + sJG,t)~ 
k s,t+l = (1 + 4 K,,tlU + sK2.t). 

It is then immediate that 

w> 

(19’) 

(21’) 

K til = (1 + 4 KtlU + SK,) = (1 + ++l K,/[(l - Ko) + (1 + ~)~+l Ko]. 

It is useful to rewrite (18’) as 

P,,, = P, + WW + SK,)> t 3 1, (23) 

with 

P, = P,U + sKo)lU + sKo), (23a) 

where we make the definition 

Dt = zut(k,,t - k,,,). (24) 

It is now possible to make a substantially complete iteration of (23) with 
(24). The details are omitted. The conclusion is that 

p,,, = p, + Ddfo + 1 + ST 1 
1$-S (2(P,:l + s) - 2Qo + (: + S)Ql) 

where 

t-1 

- & [2i+1(Po + (1 + 4j”>l-’ , 
1 

D, = P,~oU + WGo - &oMl + sKJ2. 

On taking the limit as t --f co in (25) we have 

(25) 

P, =;$Pt=P,+ Wo + 1 + s12 i 1 

1+s \ Po+l+s - El PZ(Po + (1 + 4°F’ 

= po + ~PO(KLO - Ko) 
1 + SK, 

+ ~oa(K1.0 - K2.o) MO(s) 
K02 

, 

(26 
(27) 

where 

MO(S) = ho - f 
1 

Z=l 2z(Po + (1 + s)“) ’ (28) 

with p. = (1 - Ko)/Ko . Note that if s = 0, then since n/r,(O) = 0, p, = p, . 
Rearranging (27) we have 

f-‘, = PO + Po40 (K1*o ; K2~n) [l - gl 2zt(1 _ K > : (1 + s)zK r] . (29) 
0 0 0 
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Thus, if the initial average “skill effects” of the two alleles, K,,, = p&r,, + c&,~ , 
and K,, = p&a,, + q&a,, for A and a, respectively, are equal, then, p, = p, . 
Whether there is a change in gene frequency, therefore, depends on both the 
existence of selection, and the existence of initial differences in the population 
effects of alleles with respect to skill. It is a matter of elementary algebra to 
show that 0 < p, < 1 so that the equilibrium is an admissible gene frequency. 

It is possible to prove that the variables K,,, and K,,, converge to equality, 
and hence, to the same value that Kt attains. Then it follows that K,,, , ka,, , 
and h,t all converge to either 1 or 0 depending on whether s > 0 or s < 0, 
respectively. From (22) we see that if s > 0, i.e., it is advantageous to be skilled, 
the population is eventually all skilled. Ifs < 0, so that the acquisition of the skill 
reduces fitness, the population is eventually all unskilled. 

The key conclusion here is that substantial change in gene frequency may 
occur even though there are no genetically based selection dz@rences, so long as 
there are initial differences in the skill “effects,” and selection operates on the 
phenotypes. For example, if p, = q0 = l/2, k,,, = 0.9, k,,, = 0.5, kSSo = 0.1, 
and s = 0.5, the gain in the frequency of A, p, -pa , is at least 0.15. This 
30 y0 change in the gene frequency is due to the combination of selection and 
nonuniformity in the initial distribution of skill among the genotypes. 

In the usual terminology of population genetics the gene frequency equilibrium 
is “neutral” in the sense that each initial condition ( p, , k,,, , k,,, , k3,J produces 
a different equilibrium (27) and that small perturbations from this equilibrium 
result in return to different (but nearby) equilibria. 

6. EQUAL LEARNING AMONG THE GENOTYPES WITH INCOMPLETE TRANSMISSION OF 
PARENTAL PHENOTYPES (MODEL EZ) 

The model proposed here differs from the general scheme of model G in 
the form of the transmission rule. If G is the skilled phenotype of genotype G 
and G is the unskilled phenotype of genotype G, (with the same convention for 
H), the transmission rule is represented by the following Table II. 

TABLE II 

Incomplete Transmission 

Teaching parent 
probability that 

X Other parent any offspring is skilled 

G 
G 

G 
G 

X 

X 

x 
x 

R b, 

H 6, 
R b, 
H bo 
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This transmission rule holds for each pair of parental genotypes, and any 
offspring genotype. Thus, from the mating & x Aa, the offspring are AA, 
AA, Aa, &, au, Z with probabilities (1 - b&/4, b,/4, (1 - &J/2,6,/2, (1 - &J/4, 
b,/4. Again we assume that si = sg = sa = s. The recursion relations analogous 
to (l)-(4) become 

k , = (1 + gz b&l2 + (1 + 4 KlU - w4 + a,> + (1 - Jw+J 
1 

(1 + w2 
> (31) 

k I = b,(l+s)2K,K,+((6,+6,)/2)(1+s)l~~+K, --2K,K,l+b,(l--K,)(l--K,) 
2 

(1 + sfG)(l + SK*) 
(32) 

k 3 , = Ml + s12 K22 + (1 + 4 K2(1 - K2)& + 62) + b”(l - w 
(1 + s&J2 , (33) 

where, as in Section 3, K1 = pk, + qk2 , K, = pk, + qk, , and we define 
K = pK, + $C, . It follows that 

K, = b,(l + s)” K2 + (6, + b,)(l + 5) fql - Kf + b,(l - fq2 
(1 + SW2 (34) 

= WO say. 

Notice that (b, + b,) appears as a single parameter in these recursions. We 
write (b, + b,) as 2,8 for brevity. ,G is then the average probability of skill 
transmission from a phenotypically mixed mating. As with model EC, we 
first study the properties of K under iteration according to (34). It is easy to 
see that if 

b, > P > 4, , (35) 

4(K) is monotonically increasing in K. If in addition b, > 0 and b, < 1 there 
must be either one or three valid equilibria of (34) (i.e., equilibria K with 
0 < R < 1). If there is one equilibrium &, then from the monotonicity of 
4(.) it must be globally stable. If there are three, @) < &?J < &t3) then 
R(l) and &t3) must be stable with K(2) unstable and bounding the domains 
of attraction to the others. 

Intuitively it would seem most likely in human inheritance of cultural traits 
that the ordering (35) would apply. However, one can conceive of cases in which 
there is an adverse reaction among offspring to a cultural trait manifest in parents. 
In such cases we would have different orderings from (35), which would produce 
different trajectories for the population value K of the trait. We shall look at 
some special examples later. 
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Suppose that {Kt} converges to the equilibrium ri with p bounded away 
from 0 or 1. Then for sufficiently large t 

I Km+, - K,.t+, I EX I K,,, - K,,, I I I y (1 + Sri’)2 

(1 + &,tN + SK,,,) ’ (36) 

The assumptions then allow us to use the fact that 1 $‘(&)I < 1 to prove that 

I K,,,,, - K2.w / + 0 at a geometric rate. The gene frequency ultimately 
achieved is a function of the initial population array. Both K,,, and K?,, then 
converge to l?. The net change in the gene frequency is difficult to compute 
explicitly because we have no expression analogous to (22) for K, . 

We now discuss some special cases of model El for which the equilibrium K 
can be explicitly determined. 

Case 1. Additive transmission rule. Assume b, = b, = b, + a, b, === 6, - 201. 
The possible equilibria are the roots of 

sK2 + K[1 - sb, - 24 1 + s)] - 6, = 0. 

The positive root &* of (37) is stable, as can be seen from the fact that 

If, in particular b, = 0, so that skill is transmitted only in families where 
at least one parent is skilled, the roots of (37) are 

@I) = 0 and R(2) = (24 + s) - 1)/s. 

If s > 0, I+’ is globally stable, while if s < 0, K(l) = 0 is globally stable. In 
the former case the transmission rule interacts with the selective advantage of 
the skill in preventing the whole population from becoming skilled. In the latter 
case the selective disadvantage in being skilled overcomes the transmission and 
the skill is lost from the population. As long as there is some chance that an offspring 
from a mating in which both parents lack the skill may acquire it from some source 
(i.e., b, > 0) there will always remain a residual fraction of skill in the population. 

Case 2. The Kuru model. Assume that b, = 6, = b, = 1, b, = 0; one 
member of a mating must be skilled in order that transmission occurs, and 
transmission is complete. We examine here also the situation where the skill 
is disadvantageous selectively and call this case “Kurt?’ because of its analogy 
with the well-known disease endemic in certain New Guinea Tribes. The 
disease is acquired as a result of the custom of eating or sniffing dead relatives. 
Some of these dead relatives may carry a virus, which on transmission almost 
certainly results in the death of the infected member of the tribe. Again we 
restrict attention to the case of equal genotypic selection which in the Kuru 
case is most interesting when it is against those who have adopted the custom 
and have the virus. In our terminology, these are the skilled individuals. 
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The three equilibria can be explicitly obtained and are J?(l) = I, @) = 0, 
I@) = -(l + 2s)/s2. Th us, if s < -l/2, three valid equilibria are possible. 
4(K) is monotonic; R U) = 1 is always stable and R(s) = 0 is stable provided 
J?(a) is valid, i.e., s < -l/2. The trait will spread through the population 
at a rapid rate even if it is deleterious (to the extent that s > -l/2). A more 
realistic treatment would then have to make allowance for the finite size of the 
population and the associated possibility of extinction. If s < -l/2 then 
@a) divides the range of &, values into a lower set, which eventuates in the 
loss of the skill from the system, and an upper region from which the whole 
population will eventually become skilled. 

From the general convergence argument above we then infer that Kl and 
Kz both converge to the equilibrium l? value and that p, + p, , which in this 
case seems difficult to obtain in closed form. 

Remark. One interesting aspect of the Kuru model is its relation to the 
possibility of three interior equilibria for K. In fact if b, is small and positive, 
and b, is slightly less than 1, leaving 6, and 6, both at unity, three valid interior 
equilibria exist for s large and negative. The largest and smallest of these will 
be stable. Necessary conditions in terms of all four parameters can be given 
for the existence of three roots from the equilibrium cubic equation. These 
conditions turn out to be difficult to interpret. 

7. MODELS WITHOUT SELECTION 

mre first return to the system (l)-(4) with sr = sa = s3 = 0. The gene 
frequency then remains at its initial value p through all subsequent generations. 
If we write k, as the column vector (k,,, , k,,, , k3,t)T then 

k tfl = a + Pkt (39) 

where a is the column vector (1 - n, , 1 - n, , 1 - n,)’ and p is the matrix. 

(% - WPCI (% - Nl)(l - PO) 0 
p = hi - m po n2 - N2 __-- 

2 
+2 ; %L (1 - p,) . 

0 (n3 -2N3)Po (n3 - N3N -P,) 

1 This model is formally equivalent to that of Cavalli-Sforza and Feldman (1973) 
where the entries (ni - NJ correspond to 2bi in our previous terminology. 
The eigenvalues of p are less than unity in absolute value and 

kt e CT - PI-l a, 
where I is the identity matrix. 
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A more interesting example, without selection, is that of Section 6. Here 
again p, remains at its initial value p, but now (30), (31), and (32) are replaced 
by the simpler system 

4 = b, + 2w3 - b,) + &“(b3 + bo - W), (3la) 

k2’ = 4l + K + K,)(P - b,) + Jw,(b, + b, - W), (32a) 

ji31 = 4, + K&3 - h,) + fQ(b, + 4, - V). (33a) 

Again, there is change in the average frequency of the skill in the population. 
In fact, (34) becomes 

K-1 = 4, + 2&(B - 4,) + K,z(b, + h, - 39 

= f(G), say, 
to identify it in this simple case. 

(34a) 

As in the analysis of Section 6, it is possible to show that j K,,, - K2,1 j --f 0, 
when t --f co. Hence, &, k,,, , K,,, all approach the value ultimately taken by K. 
The convergence properties of K are of some interest here. The admissible 
equilibrium for K is 

&- = 1 + 2(h - 8) - AlI2 
2(b, + 4, - 2P) ’ 

where A = [l + 2(b, - p)]” - 4b,,[b, + b, - 2,Ll-J. Now if A < 1 the con- 
vergence of Kt to k , is monotonic. If 1 < A < 4 the convergence to k 
is oscillatory. But if A > 4, the only valid equilibrium of (34a) is unstable. 
In this case we have shown that there is a stable two-point limit cycle. The 
points are equilibria of the recursion 

K+2 = dKt) = fww (41) 

Obviously, two equilibria of (41) are those of (34a). The other two are represented 
as C, , &- with 

e i = -(I + 263 - h,)) It (A - 4P2 
33 

The points C+ and C- lie on either side of &.. and clearly, f(C+) = C- and 
f(c-) = c+ . A s e ut 1 ria of (40) they are stable whenever they exist, i.e., q ‘l’b 
whenever K- is unstable. 

The conclusion here is that when A < 4, &, k2,t, k3,t all converge to 
J?- . If A > 4 these three frequencies tend to equality and to oscillate between 
C+ and C- . We have represented the situation graphically in Fig. 1, highlighting 
the parameter region which leads to cycling. This is termed the “chip of 
oscillation.” It should be pointed out that the condition A > 4 is quite extreme 
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since A is in fact bounded above by 5. We require 4b,(l - 6.J > 3 and indeed 
b, < b, . These conditions may seem artificial in most common cases of learning, 
but they are not so unrealistic in situations where children tend to behave 
in a manner opposite to the parental norm. 

- b3 

FIG. 1. The shaded area in the top left depicts the parameter set that results in the 

stable two point limit cycle (42). The b oundary surface marked E. , El , E, and Es 
correspond to the stable equilibria I? = 0, I? = I, I? = (b, + b, - I)/(b, + b, - ba), 
K = b,,//3, respectively. In the unshaded three-dimensional area, I?- specified by (40) 
is stable. 

A very simple example of direct convergence is given by the specification 
h, = 0, b, = b, = b, = 1. That is, the skill can be acquired only from the 
parents, but it is enough that one of the parents knows the skill for all the 
children to acquire it. Similarly, this specification might describe an infectious 
disease, where the children get the disease only from one or other or both 
of the parents, but they get it with probability 1. The recursion (10) becomes 

Kt = 1 - (1 - I&,)2 = 1 - (1 - K#, 

where K,, is the initial K value. Clearly, Kt converges rapidly to 1. 
For the more general system (30)-(33) t i is also conceivable that a limit 

cycle be established. In fact the system I&+, = $(+(KJ) has five possible 
equilibria of which three are possible roots of (34) at equilibrium. The other 
two, under certain conditions would presumably be the points of a two point 
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cycle. From the special Case 2 above, we might conjecture that under conditions 
that make all equilibria of (34) unstable, this two point cycle would be stable. 
The algebra appears to be prohibitive, especially since the stability conditions 
on the roots of the general cubic have not been delimited. 

DISCUSSION 

The difficulty of assessing whether a quantitative character (such as an 
inherited disease) is due to a single gene with incomplete penetrance, or is 
polygenic in its origin, has been pointed out by many authors (e.g., Edwards, 
1960; Smith, 1971; Kidd and Cavalli-Sforza, 1973). Most analyses have been 
made in terms of one generation transitions of population statistics such as 
correlations between relatives. To study the long term evolutionary dynamics 
of such quantitative traits requires the assumption of a fitness function (such 
as the squared deviation from optimum model of Fisher (1930)) and an 
“inheritance kernel” describing the phenotypes of the offspring of the possible 
matings (see, e.g., Slatkin, 1970). The genetic origin of the character does not 
usually enter into these considerations although the studies of Karlin and 
Carmelli (1974, 1975) and Carmelli and Karlin (1975) are exceptions in this 
regard. 

In this paper we have considered the simplest form of phenotypic variation, 
namely, a trait taking two values. Since our motivation here has been the study 
of cultural evolution, the phenotypes were termed skilled and unskilled. With 
reference to the study of heritable diseases these might just as well be called 
“infected” and “uninfected.” The latter dichotomy motivated Wilson (1974) 
in her statistical study of correlations between relatives for a disease transmitted 
in much the same way as we have modelled here. Wilson’s central conclusion 
was that, for diseases transmitted environmentally, such correlations may 
be very close to those expected under a classical one locus scheme. 

Our purpose has been to study the equilibrium dynamics of the frequencies 
of the phenotypes in the population. In particular we have studied the interaction 
between natural selection on the phenotype and genetically determined differences 
in the receptivity of offspring to its transmission. 

In the main we have assumed that fitness was determined only by the presence 
or absence of the trait. (The details of Model G, incorporating genetic differences 
in the selction on the trait are presently under study). We have concentrated 
on two models of the learning process. In the former, depicted in Table I, 
the probability that an offspring acquires the skill is determined by its genotype, 
and by whether the teaching parent had the skill. The model in Table II describes 
a learning process unaffected by the offspring genotype but dependent on 
the phenotypic makeup of both parents. 
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It might have been predicted that for the former model of transmission 
with selection independent of genotype, differences in the ability to learn 
among the genotypes would determine the status of any genetic polymorphism. 
Reflection might have advanced this reasoning to include consideration of 
whether the selection favored or disfavored the skill. In fact it turns out that 
if the skill is advantageous and only skilled teaching parents have skilled offspring 
(ai = 0) a stable genetic polymorphism is possible only if the heterozygotes 
are better “learners” than homozygotes. It is somewhat surprising that this 
“overdominance”in learning ability is not sufficient for the maintenance of 
a genuinely stable polymorphism. Condition (16a), in fact, shows that, under 
these conditions, selection must be stronger than an amount determined by 
the learning probabilities. For example, if (1 - Nr) = (1 - NJ = 0.7 and 
(1 - N,) = 0.8 are the probabilities in Table I that the respective offspring 
genotypes be skilled when their teaching parent is skilled, (16a) requires that for 
a stable polymorphism the advantage s, in favor of skill be greater than l/3. 
Clearly, (16a) can be a stringent additional requirement to the intuitively 
expected condition of overdominance in learning ability. It is also surprising that, 
in these cases, if the skill is disadvantageous, no isolated polymorphism exists, 
and while the skill disappears from the population, the ultimate gene frequency 
is governed by a neutral curve of equilibria. One way of interpreting the 
additional condition (16a) is in terms of an added segregation operation. Selection 
has to overcome the usual Mendelian segregation, and as well, the phenotypic 
segregation due to imperfect phenotypic transmission. 

The analysis in Section 5 illustrates a further interesting fact. Here, using 
the transmission set up of Table I, there is completely accurate copying of 
the teaching parent by all offspring irrespective of genotype. Even if the skill 
is advantageous, no isolated polymorphism obtains since all genotypes are 
equivalent. But there may be a substantial change in the gene frequency over 
time due to initiaI differences among the genotypes in the frequency of the skill. 
These founder effects, together with selection, may cause large gene frequency 
changes according to (29). 

The learning rule in Table II differs from that in Table I in that (1) the 
genotypes are not differentiated, and (2) the parental mating phenotype deter- 
mines the probability of learning. In these cases the gene frequency apparently 
approaches a point determined by initial frequencies, while the phenotypic 
proportions within the genotypes converge to an isolated equilibrium value. 
The Kuru model of Section 6 is interesting in this respect since it shows that 
a strongly disadvantageous custom can spread through a group provided there 
is enough pressure on the members of the group to conform to the custom. 
On the other hand, if a strongly disadvantageous trait can be learned outside 
the family environment then a low frequency of the trait may be maintained. 
This is completely analogous to the classical mutation-selection balance of 
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population genetics. In these cases it would be of considerable interest to 
introduce the added feature of finite population size in order to consider the 
problem ecologically, as one of potential extinction or survival of the group. 

The models and analysis in Sections 5-7 are not concerned in a direct way 
with population genetics. Yet it seems plausible that the evolution of any 
phenotype will result in changes in the frequencies of unrelated genes that 
were initially nonrandomly distributed among the phenotypic classes. 

A brief remark on the reasons for some of the strange mathematical behavior 
of the models is in order. Referring to Eq. (l)-(4), f or example, the transformation 
in the gene frequency variable involves a confounded term in the selection 
coefficients and skill proportions. The latter are of course functions of the gene 
frequency at earlier time points. We have then a form of frequency dependent 
selection involving a complex delay phenomenon. It is well known (see, e.g., 
Crow and Kimura, 1970) that frequency dependent selection may produce 
cycling and other behavior not found in systems with constant selection. 

The type of model represented by (l)-(4) IS not restricted in application 
to cultural and learned traits or infectious diseases transmitted from parent to 
child. It could also apply to systems of maternal inheritance such as have been 
discussed by Watson ( 1959) in relation to the cytoplasmic transmission of 
“sexratio” in Drosophila bifasciata. An extensive review of the epidemiology 
of such vector-borne diseases was made by Fine (1974) in the context of what 
he called “vertical transmission” of infections. Watson’s model would fall into 
this general category with the added feature of sex-ratio distortion. Our model 
could also be viewed in these terms as allowing genotypically determined 
differences in either the viability of infected offspring or their resistance to 
a vector or both. 
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